Amino Acids

pp 1–25 | Cite as

The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives

  • Jianlin Han
  • Alicja Wzorek
  • Magdalena Kwiatkowska
  • Vadim A. SoloshonokEmail author
  • Karel D. KlikaEmail author
Review Article


This review covers the phenomenon of the self-disproportionation of enantiomers (SDE) of amino acids and their derivatives in all its guises from phase transformations (recrystallization, sublimation, and distillation), to the application of force fields, through to chromatography including HPLC, MPLC, gravity-driven column chromatography, and SEC. The relevance of the SDE phenomenon to amino acid research and to marketed pharmaceuticals is clear given the potential for alteration of the enantiomeric excess of a portion of a scalemic sample. In addition, the possible contribution of the SDE phenomenon to the genesis of prebiotic homochirality is considered.


Molecular chirality Self-disproportionation of enantiomers (SDE) Amino acids and derivatives Physicochemical phase transitions Achiral chromatography Enantioenrichment/-depletion/-purification 



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21761132021, JH), the Ministry of Science and Higher Education, Poland (Grant No. 612 561, AW), and IKERBASQUE, the Basque Foundation for Science, Spain (VAS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.


  1. Abás S, Arróniz C, Molins E, Escolano C (2018) Access to the enantiopure pyrrolobenzodiazepine (PBD) dilactam nucleus via self-disproportionation of enantiomers. Tetrahedron 74:867–871CrossRefGoogle Scholar
  2. Aceña JL, Sorochinsky AE, Katagiri T, Soloshonok VA (2013) Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions. Chem Commun 49:373–375CrossRefGoogle Scholar
  3. Aceña JL, Sorochinsky AE, Soloshonok VA (2014) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 46:2047–2073CrossRefPubMedGoogle Scholar
  4. Albrecht M, Soloshonok VA, Schrader L, Yasumoto M, Suhm MA (2010) Chirality-dependent sublimation of α-(trifluoromethyl)-lactic acid: relative vapor pressures of racemic, eutectic, and enantiomerically pure forms, and vibrational spectroscopy of isolated (S, S) and (S, R) dimers. J Fluor Chem 131:495–504CrossRefGoogle Scholar
  5. Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944:225–240CrossRefPubMedGoogle Scholar
  6. Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024:15–20CrossRefPubMedGoogle Scholar
  7. Bada JL, Cronin JR, Ho M-S, Kvenvolden KA, Lawless JG, Miller SL, Oro J, Steinberg S (1983) On the reported optical activity of amino acids in the Murchison meteorite. Nature 301:494–496CrossRefGoogle Scholar
  8. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star formation regions: implications for biomolecular homochirality. Science 281:672–674CrossRefPubMedGoogle Scholar
  9. Basiuk VA, Gromovoy TY, Chuiko AA, Soloshonok VA, Kukhar VP (1992) A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines. Synthesis 449–451Google Scholar
  10. Bellec A, Guillemin J-C (2010) A simple explanation of the enhancement or depletion of the enantiomeric excess in the partial sublimation of enantiomerically enriched amino acids. Chem Commun 46:1482–1484CrossRefGoogle Scholar
  11. Blackmond DG, Klussmann M (2007) Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem Commun. CrossRefGoogle Scholar
  12. Blaskovich MAT (2016) Unusual amino acids in medicinal chemistry. J Med Chem 59:10807–10836CrossRefPubMedGoogle Scholar
  13. Bonner WA, Rubenstein E (1987) Supernovae, neutron stars and biomolecular chirality. BioSystems 20:99–111CrossRefPubMedGoogle Scholar
  14. Breslow R, Levine MS (2006) Amplification of enantiomeric concentrations under credible prebiotic conditions. Proc Natl Acad Sci USA 103:12979–12980CrossRefPubMedGoogle Scholar
  15. Charles R, Gil-Av E (1984) Self-amplification of optical activity by chromatography on an achiral adsorbent. J Chromatogr 298:516–520CrossRefGoogle Scholar
  16. Coquerel G (2000) Review on the heterogeneous equilibria between condensed phases in binary systems of enantiomers. Enantiomer 5:481–498PubMedGoogle Scholar
  17. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955CrossRefPubMedGoogle Scholar
  18. Darquié B, Stoeffler C, Shelkovnikov A, Daussy C, Amy-Klein A, Chardonnet C, Zrig S, Guy L, Crassous J, Soulard P, Asselin P, Huet TR, Schwerdtfeger P, Bast R, Saue T (2010) Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22:870–884CrossRefPubMedGoogle Scholar
  19. Diter P, Taudien S, Samuel O, Kagan HB (1994) Enantiomeric enrichment of sulfoxides by preparative flash chromatography on an achiral phase. J Org Chem 59:370–373CrossRefGoogle Scholar
  20. Dobashi A, Motoyama Y, Kinoshita K, Hara S, Fukasaku N (1987) Self-induced chiral recognition in the association of enantiomeric mixtures on silica gel chromatography. Anal Chem 59:2209–2211CrossRefGoogle Scholar
  21. Doucet H, Fernandez E, Layzell TP, Brown JM (1999) The scope of catalytic asymmetric hydroboration/oxidation with rhodium complexes of 1,1′-(2-diarylphosphino-1-naphthyl)isoquinolines. Chem Eur J 5:1320–1330CrossRefGoogle Scholar
  22. Drabowicz J, Jasiak A, Wzorek A, Sato A, Soloshonok VA (2017) Self-disproportionation of enantiomers (SDE) of chiral sulfoxides, amides and thioamides via achiral chromatography. Arkivoc 2017:557–578CrossRefGoogle Scholar
  23. Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840CrossRefGoogle Scholar
  24. Fales HM, Wright GJ (1977) Detection of chirality with the chemical ionization mass spectrometer. “Meso” ions in the gas phase. J Am Chem Soc 99:2339–2340CrossRefGoogle Scholar
  25. Farina M (1987) The vapour pressure of enantiomers and of their mixtures. J Chem Soc Chem Commun. CrossRefGoogle Scholar
  26. Farina M, Di Silvestro G (1988) Solid–liquid–vapor equilibria of chiral compounds. Mol Cryst Liq Cryst Incorp Nonlinear Opt 161:177–198CrossRefGoogle Scholar
  27. Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 28:3418–3438CrossRefGoogle Scholar
  28. Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun. CrossRefGoogle Scholar
  29. Garin DL, Cooke Greco DJ, Kelley L (1977) Enhancement of optical activity by fractional sublimation. An alternative to fractional crystallization and a warning. J Org Chem 42:1249–1251CrossRefGoogle Scholar
  30. Gavezzotti A (1994) Are crystal structures predictable? Acc Chem Res 27:309–314CrossRefGoogle Scholar
  31. Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525CrossRefGoogle Scholar
  32. Goto M, Tateishi K, Ebine K, Soloshonok VA, Roussel Ch, Kitagawa O (2016) Chiral additive induced self-disproportionation of enantiomers under MPLC conditions: preparation of enantiomerically pure samples of 1-(aryl)ethylamines from racemates. Tetrahedron Asymmetry 27:317–321CrossRefGoogle Scholar
  33. Guetté JP, Boucherot D, Horeau A (1973) Interactions diastereoisomeres d’enantiomeres en phase liquide-II: Peut-on séparer les antipodes d’un composé chiral par distillation? Tetrahedron Lett 14:465–468CrossRefGoogle Scholar
  34. Han J, Nelson DJ, Sorochinsky AE, Soloshonok VA (2011) Self-disproportionation of enantiomers via sublimation; new and truly green dimension in optical purification. Curr Org Synth 8:310–317CrossRefGoogle Scholar
  35. Han J, Kitagawa O, Wzorek A, Klika KD, Soloshonok VA (2018a) The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem Sci 9:1718–1739CrossRefPubMedPubMedCentralGoogle Scholar
  36. Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A (2018b) Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 47:1307–1350CrossRefPubMedGoogle Scholar
  37. Han J, Wzorek A, Klika KD, Soloshonok VA (2018c) Fluorine-containing pharmaceuticals and the phenomenon of the self-disproportionation of enantiomers, Ch. 10. In: Postigo A (ed) Late-stage fluorination of bioactive molecules and biologically-relevant substrates. Elsevier, AmsterdamGoogle Scholar
  38. Han J, Wzorek A, Klika KD, Soloshonok VA (2019) The role of fluorine in the self-disproportionation of enantiomers (SDE) phenomenon of scalemic samples of fluoroorganics. In: Ojima I (ed) Frontiers of organofluorine chemistry. World Scientific Publishing Co., LondonGoogle Scholar
  39. Hayashi Y, Matsuzawa M, Yamaguchi J, Yonehara S, Matsumoto Y, Shoji M, Hashizume D, Koshino H (2006) Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state. Angew Chem Int Ed 45:4393–4397Google Scholar
  40. Henning T, Semenov D (2013) Chemistry in protoplanetary disks. Chem Rev 113:9016–9042CrossRefPubMedGoogle Scholar
  41. Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414CrossRefPubMedGoogle Scholar
  42. Hirai M, Terada S, Yoshida H, Ebine K, Hirata T, Kitagawa O (2016) Catalytic enantioselective synthesis of N–C axially chiral mebroqualone and its derivatives through reductive asymmetric desymmetrization. Org Lett 18:5700–5703CrossRefPubMedGoogle Scholar
  43. Hirata T, Takahashi I, Suzuki Y, Yoshida H, Hasegawa H, Kitagawa O (2016) Catalytic enantioselective synthesis of N–C axially chiral phenanthridin-6-one derivatives. J Org Chem 81:318–323CrossRefPubMedGoogle Scholar
  44. Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430CrossRefPubMedGoogle Scholar
  45. Horeau A, Guetté JP (1974) Interactions diastereoisomeres d’antipodes en phase liquid. Tetrahedron 30:1923–1931CrossRefGoogle Scholar
  46. Hosaka T, Imai T, Wzorek A, Marcinkowska M, Kolbus A, Kitagawa O, Soloshonok VA, Klika KD (2019) The self-disproportionation of enantiomers (SDE) of α-amino acid derivatives; facets of steric and electronic properties. Amino Acids. CrossRefPubMedGoogle Scholar
  47. Huang J, Yu L (2006) Effect of molecular chirality on racemate stability: α-amino acids with nonpolar R groups. J Am Chem Soc 128:1873–1878CrossRefPubMedGoogle Scholar
  48. Ishida Y, Aida T (2002) Homochiral supramolecular polymerization of an “S”-shaped chiral monomer: translation of optical purity into molecular weight distribution. J Am Chem Soc 124:14017–14019CrossRefPubMedGoogle Scholar
  49. Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates, and resolutions. Wiley, New YorkGoogle Scholar
  50. Jung M, Schurig V (1992) Computer simulation of three scenarios for the separation of non-racemic mixtures by chromatography on achiral stationary phases. J Chromatogr 605:161–166CrossRefGoogle Scholar
  51. Katagiri T, Yoda C, Furuhashi K, Ueki K, Kubota T (1996) Separation of an enantiomorph and its racemate by distillation: strong chiral recognizing ability of trifluorolactates. Chem Lett 25:115–116CrossRefGoogle Scholar
  52. Katagiri T, Takahashi S, Tsuboi A, Suzaki M, Uneyama K (2010) Discrimination of enantiomeric excess of optically active trifluorolactate by distillation: evidence for a multi-center hydrogen bonding network in the liquid state. J Fluor Chem 131:517–520CrossRefGoogle Scholar
  53. Klika KD (2012) Suggested new terms for describing chiral states and the state-dependent behavior of chiral systems. Int J Org Chem 2:224–232CrossRefGoogle Scholar
  54. Klika KD, Budovská M, Kutschy P (2010a) NMR spectral enantioresolution of spirobrassinin and 1-methoxyspirobrassinin enantiomers using (S)-(−)-ethyl lactate and modeling of spirobrassinin self-association for rationalization of its self-induced diastereomeric anisochronism (SIDA) and enantiomer self-disproportionation on achiral-phase chromatography (ESDAC) phenomena. J Fluor Chem 131:467–476CrossRefGoogle Scholar
  55. Klika KD, Budovská M, Kutschy P (2010b) Enantiodifferentiation of phytoalexin spirobrassinin derivatives using the chiral solvating agent (R)-(+)-1,1′-bi-2-naphthol in conjunction with molecular modeling. Tetrahedron Asymmetry 21:647–658CrossRefGoogle Scholar
  56. Klika KD, Wzorek A, Soloshonok VA (2018) Internal chirality descriptors iR and iS and ire and isi. A proposed notation to extend the usefulness of the R/S system by retaining the sense of stereochemistry in cases of ligand ranking changes. Chirality 30:1054–1066CrossRefPubMedGoogle Scholar
  57. Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006a) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623CrossRefPubMedGoogle Scholar
  58. Klussmann M, White AJP, Armstrong A, Blackmond DG (2006b) Rationalization and prediction of solution enantiomeric excess in ternary phase systems. Angew Chem Int Ed 45:7985–7989CrossRefGoogle Scholar
  59. Klussmann M, Mathew SP, Iwamura H, Wells DH Jr, Armstrong A, Blackmond DG (2006c) Kinetic rationalization of nonlinear effects in asymmetric catalysis based on phase behavior. Angew Chem Int Ed 45:7989–7992CrossRefGoogle Scholar
  60. Klussmann M, Izumi T, White AJP, Armstrong A, Blackmond DG (2007) Emergence of solution-phase homochirality via crystal engineering of amino acids. J Am Chem Soc 129:7657–7660CrossRefPubMedGoogle Scholar
  61. Kojo S (2010) Origin of homochirality of amino acids in the biosphere. Symmetry 2:1022–1032CrossRefGoogle Scholar
  62. Kojo S, Tanaka K (2001) Enantioselective crystallization of d,l-amino acids induced by spontaneous asymmetric resolution of d,l-asparagine. Chem Commun. CrossRefGoogle Scholar
  63. Kojo S, Uchino H, Yoshimura M, Tanaka K (2001) Racemic d,l-asparagine causes enantiomeric excess of other coexisting racemic d,l-amino acids during recrystallization: a hypothesis accounting for the origin of l-amino acids in the biosphere. Chem Commun. CrossRefGoogle Scholar
  64. Koppenhoefer B, Trettin U (1989) Is it possible to affect the enantiomeric composition by a simple distillation process? Fresenius’ Z Anal Chem 333:750CrossRefGoogle Scholar
  65. Kozma D, Kassai C, Fogassy E (1995) Enantiomeric enrichment by the use of density differences between racemic compounds and optically active enantiomers. Tetrahedron Lett 36:3245–3246CrossRefGoogle Scholar
  66. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926CrossRefPubMedGoogle Scholar
  67. Kwart H, Hoster DP (1967) Separation of an enantiomorph and its racemate by sublimation. J Org Chem 32:1867–1870CrossRefGoogle Scholar
  68. Laerdahl JK, Schwerdtfeger P, Quiney HM (2000) Theoretical analysis of parity-violating energy differences between the enantiomers of chiral molecules. Phys Rev Lett 84:3811–3814CrossRefPubMedGoogle Scholar
  69. Lorenz H, Perlberg A, Sapoundjiev D, Elsner MP, Seidel-Morgenstern A (2006) Crystallization of enantiomers. Chem Eng Proc 45:863–873CrossRefGoogle Scholar
  70. Ma JS (2003) Unnatural amino acids in drug discovery. Chim Oggi Chem Today 21:65–68Google Scholar
  71. Maeno M, Tokunaga E, Yamamoto T, Suzuki T, Ogino Y, Ito E, Shiro M, Asahi T, Shibata N (2015) Self-disproportionation of enantiomers of thalidomide and its fluorinated analogue via gravity-driven achiral chromatography: mechanistic rationale and implications. Chem Sci 6:1043–1048CrossRefPubMedGoogle Scholar
  72. Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  73. Martens J, Bhushan R (1992) Resolution of enantiomers with achiral phase chromatography. J Liq Chromatogr Relat Technol 15:1–27CrossRefGoogle Scholar
  74. Martens J, Bhushan R (2014) Purification of enantiomeric mixtures in enantioselective synthesis: overlooked errors and scientific basis of separation in achiral environment. Helv Chim Acta 97:161–187CrossRefGoogle Scholar
  75. Martens J, Bhushan R (2016) Enantioseparations in achiral environments and chromatographic systems. Isr J Chem 56:990–1009CrossRefGoogle Scholar
  76. Mastai Y, Völkel A, Cölfen H (2008) Separation of racemate from excess enantiomer of chiral nonracemic compounds via density gradient ultracentrifugation. J Am Chem Soc 130:2426–2427CrossRefPubMedGoogle Scholar
  77. Matusch R, Coors C (1989) Chromatographic separation of the excess enantiomer under achiral conditions. Angew Chem Int Ed 28:626–627CrossRefGoogle Scholar
  78. Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WH-P (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sc USA 101:9182–9186CrossRefGoogle Scholar
  79. Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok VA, Sorochinsky AE (2011) Synthesis of fluorinated β-amino acids. Synthesis 2011:3045–3079CrossRefGoogle Scholar
  80. Monde K, Harada N, Takasugi M, Kutschy P, Suchý M, Dzurilla M (2000) Enantiomeric excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system. J Nat Prod 63:1312–1314CrossRefPubMedGoogle Scholar
  81. Morowitz HJ (1969) A mechanism for the amplification of fluctuations in racemic mixtures. J Theor Biol 25:491–494CrossRefPubMedGoogle Scholar
  82. Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok VA, Aceña JL, Kitagawa O (2012) Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron 68:4013–4017CrossRefGoogle Scholar
  83. Nanita SC, Cooks RG (2006) Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed 45:554–569CrossRefGoogle Scholar
  84. Nicoud R-M, Jaubert J-N, Rupprecht I, Kinkel J (1996) Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality 8:234–243CrossRefGoogle Scholar
  85. O’Donnell MJ, Delgado F (2001) Enantiomeric enrichment of α-amino acid derivatives: recrystallization of N-Fmoc α-amino acid tert-butyl esters. Tetrahedron 57:6641–6650CrossRefGoogle Scholar
  86. Ogawa S, Nishimine T, Tokunaga E, Nakamura S, Shibata N (2010) Self-disproportionation of enantiomers of heterocyclic compounds having a tertiary trifluoromethyl alcohol center on chromatography with a non-chiral system. J Fluor Chem 131:521–524CrossRefGoogle Scholar
  87. Paquette LA, Lau CJ (1987) An example of spontaneous resolution by sublimation. J Org Chem 52:1634–1635CrossRefGoogle Scholar
  88. Perry RH, Wu C, Nefliu M, Cooks RG (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun. CrossRefGoogle Scholar
  89. Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic chemistry. Chirality 19:589–600CrossRefPubMedGoogle Scholar
  90. Pracejus G (1959) Optische Aktivierung von N-phthalyl-α-aminosäure Derivaten durch tert.-Basen-Katalyse. Liebigs Ann Chem 622:10–22CrossRefGoogle Scholar
  91. Pratt Brock C, Schweizer WB, Dunitz JD (1991) On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820CrossRefGoogle Scholar
  92. Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ (2001) Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics. Tetrahedron Lett 42:145–148CrossRefGoogle Scholar
  93. Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618–4630CrossRefGoogle Scholar
  94. Reyes-Rangel G, Vargas-Caporali J, Juaristi E (2017) Asymmetric Michael addition reaction organocatalyzed by stereoisomeric pyrrolidine sulfinamides under neat conditions. A brief study of self-disproportionation of enantiomers. Tetrahedron 73:4707–4718CrossRefGoogle Scholar
  95. Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sato T, Izawa K, Aceña JL, Liu H, Soloshonok VA (2016) Tailor-made α-amino acids in the pharmaceutical industry: synthetic approaches to (1R,2S)-1-amino-2-vinylcyclopropane-1-carboxylic acid (vinyl-ACCA). Eur J Org Chem 2016:2757–2774CrossRefGoogle Scholar
  97. Schurig V (2009) Elaborate treatment of retention in chemoselective chromatography—the retention increment approach and nonlinear effects. J Chromatogr A 1216:1723–1736CrossRefPubMedGoogle Scholar
  98. Sha W, Zhang L, Zhang W, Mei H, Soloshonok VA, Han J, Pan Y (2016) Catalytic cascade aldol–cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C–F quaternary stereogenic center. Org Biomol Chem 14:7295–7303CrossRefPubMedGoogle Scholar
  99. Siegel JS (1998) Homochiral imperative of molecular evolution. Chirality 10:24–27CrossRefGoogle Scholar
  100. Soai K, Kawasaki T, Matsumoto A (2018) Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality. Tetrahedron 74:1973–1990CrossRefGoogle Scholar
  101. Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45:766–769CrossRefGoogle Scholar
  102. Soloshonok VA, Berbasov DO (2006a) Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim Oggi Chem Today 24:44–47Google Scholar
  103. Soloshonok VA, Berbasov DO (2006b) Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J Fluor Chem 127:597–603CrossRefGoogle Scholar
  104. Soloshonok VA, Izawa K (2009) Asymmetric synthesis and application of α-amino acids, vol 1009. ACS symposium series. Oxford University Press, OxfordGoogle Scholar
  105. Soloshonok VA, Sorochinsky AE (2010) Practical methods for the synthesis of symmetrically α,α-disubstituted-α-amino acids. Synthesis 2010:2319–2344CrossRefGoogle Scholar
  106. Soloshonok VA, Klika KD (2014) Terminology related to the phenomenon ‘self-disproportionation of enantiomers’ (SDE). Helv Chem Acta 97:1583–1589CrossRefGoogle Scholar
  107. Soloshonok VA, Gerus II, Yagupoľskii YL, Kukhar VP (1987) Fluorine containing amino acids. III. α-trifluoromethyl amino acids. Zh Org Khim 23:2308–2313Google Scholar
  108. Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L (1999) Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoro-methyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyroglutamic acids. Tetrahedron 55:12045–12058CrossRefGoogle Scholar
  109. Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi JS, Singleton DA (2007) Phenomenon of optical self-purification of chiral non-racemic compounds. J Am Chem Soc 129:12112–12113CrossRefPubMedGoogle Scholar
  110. Soloshonok VA, Roussel Ch, Kitagawa O, Sorochinsky AE (2012) Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 41:4180–4188CrossRefPubMedGoogle Scholar
  111. Soloshonok VA, Wzorek A, Klika KD (2017) A question of policy: should tests for the self-disproportionation of enantiomers (SDE) be mandatory for reports involving scalemates? Tetrahedron Asymmetry 28:1430–1434CrossRefGoogle Scholar
  112. Sorochinsky AE, Soloshonok VA (2013) Self-disproportionation of enantiomers of enantiomerically enriched compounds in topics in current chemistry. In: Schurig V (ed) Differentiation of enantiomers II, vol 341. Springer, Berlin, pp 301–340CrossRefGoogle Scholar
  113. Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013a) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; part 1: alkyl halide alkylations. Amino Acids 45:691–718CrossRefPubMedGoogle Scholar
  114. Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013b) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids. Amino Acids 45:1017–1033CrossRefPubMedGoogle Scholar
  115. Sorochinsky AE, Aceña JL, Soloshonok VA (2013c) Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: role of fluorine as enabling element. Synthesis 45:141–152Google Scholar
  116. Sorochinsky AE, Katagiri T, Ono T, Wzorek A, Aceña JL, Soloshonok VA (2013d) Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of α-CF3-containing secondary alcohols. Chirality 25:365–368CrossRefPubMedGoogle Scholar
  117. Storch G, Haas M, Trapp O (2017) Attracting enantiomers: chiral analytes that are simultaneously shift reagents allow rapid screening of enantiomeric ratios by NMR spectroscopy. Chem Eur J 23:5414–5418CrossRefPubMedGoogle Scholar
  118. Suchý M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentová E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)-(−)-spirobrassinin, and its oxazoline analog. J Org Chem 66:3940–3947CrossRefPubMedGoogle Scholar
  119. Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ (2018) d-Amino acids in molecular evolution in space—absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BBA Proteins Proteom 1866:743–758CrossRefGoogle Scholar
  120. Suzuki Y, Han J, Kitagawa O, Aceña JL, Klika KD, Soloshonok VA (2015) A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Adv 5:2988–2993CrossRefGoogle Scholar
  121. Tarasevych AV, Sorochinsky AE, Kukhar VP, Chollet A, Daniellou R, Guillemin J-C (2013) Partial sublimation of enantioenriched amino acids at low temperature. Is it coming from the formation of a euatmotic composition of the gaseous phase? J Org Chem 78:10530–10533CrossRefPubMedGoogle Scholar
  122. Tateishi K, Tsukagoshi S, Nakamura T, Watanabe S, Soloshonok VA, Kitagawa O (2013) Chiral initiator-induces self-disproportionation of enantiomers via achiral chromatography: application to enantiomer separation of racemate. Tetrahedron Lett 54:5220–5223CrossRefGoogle Scholar
  123. Terada S, Hirai M, Honzawa A, Kitagawa O, Kamizela A, Wzorek A, Soloshonok VA (2017) Possible case of halogen bond-driven self-disproportionation of enantiomers (SDE) via achiral chromatography. Chem Eur J 23:14631–14638CrossRefPubMedGoogle Scholar
  124. Tia M, Cunha de Miranda B, Daly S, Gaie-Levrel F, Garcia GA, Powis I, Nahon L (2013) Chiral asymmetry in the photoionization of gas-phase amino-acid alanine at Lyman-α radiation wavelength. J Phys Chem Lett 4:2698–2704CrossRefGoogle Scholar
  125. Ueki H, Yasumoto M, Soloshonok VA (2010) Rational application of self-disproportionation of enantiomers via sublimation—a novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry 21:1396–1400CrossRefGoogle Scholar
  126. Vauquelin LN, Robiquet PJ (1806) La découverte d’un nouveau principe végétal dans le suc des asperges. Ann Chim 57:88–93Google Scholar
  127. Viedma C, Cintas P (2011) On the chiral homogeneity of nature: from atoms to small molecules. Isr J Chem 51:997–1006CrossRefGoogle Scholar
  128. Wallach O (1895a) Zur Kenntniss der Terpene und der ätherischen Oele. Liebigs Ann Chem 286:90–118CrossRefGoogle Scholar
  129. Wallach O (1895b) Zur Kenntniss der Terpene und der ätherischen Oele. Ueber gebromte Derivate der Carvonreihe. Liebigs Ann Chem 286:119–143CrossRefGoogle Scholar
  130. Wzorek A, Klika KD, Drabowicz J, Sato A, Aceña JL, Soloshonok VA (2014) The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Org Biomol Chem 12:4738–4746CrossRefPubMedGoogle Scholar
  131. Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD (2015) Enantiomeric enrichments via the self-disproportionation of enantiomers (SDE) by achiral, gravity-driven column chromatography: a case study using N-(1-phenylethyl)acetamide for optimizing the enantiomerically pure yield and magnitude of the SDE. Helv Chem Acta 98:1147–1159CrossRefGoogle Scholar
  132. Wzorek A, Sato A, Drabowicz J, Soloshonok VA (2016a) Self-disproportionation of enantiomers via achiral gravity-driven column chromatography: a case study of N-acyl-α-phenylethylamines. J Chromatogr A 1467:270–278CrossRefPubMedGoogle Scholar
  133. Wzorek A, Sato A, Drabowicz J, Soloshonok VA (2016b) Self-disproportionation of enantiomers (SDE) of chiral nonracemic amides via achiral chromatography. Isr J Chem 56:977–989CrossRefGoogle Scholar
  134. Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD (2016c) Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters. Amino Acids 48:605–613CrossRefPubMedGoogle Scholar
  135. Xie C, Wu L, Han J, Soloshonok VA, Pan Y (2015) Assembly of fluorinated quaternary stereogenic centers via catalytic enantioselective detrifluoroacetylative aldol reactions. Angew Chem Int Ed 54:6019–6023CrossRefGoogle Scholar
  136. Yasumoto M, Ueki H, Soloshonok VA (2010a) Self-disproportionation of enantiomers of 3,3,3-trifluorolactic acid amides via sublimation. J Fluor Chem 131:266–269CrossRefGoogle Scholar
  137. Yasumoto M, Ueki H, Ono T, Katagiri T, Soloshonok VA (2010b) Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate. J Fluor Chem 131:535–539CrossRefGoogle Scholar
  138. Yasumoto M, Ueki H, Soloshonok VA (2010c) Self-disproportionation of enantiomers of α-trifluoromethyl lactic acid amides via sublimation. J Fluor Chem 131:540–544CrossRefGoogle Scholar
  139. Záhorsky U-I, Musso H (1973) Veranderungen im Deuteriumgehalt bei partiell optisch aktiven, festen Verbindungen im Massenspektrometer. Chem Ber 106:3608–3613CrossRefGoogle Scholar
  140. Zhang L, Xie C, Dai Y, Mei H, Han J, Soloshonok VA, Pan Y (2016) Catalytic asymmetric detrifluoroacetylative aldol reactions of aliphatic aldehydes for construction of C–F quaternary stereogenic centers. J Fluor Chem 184:28–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
  2. 2.Institute of ChemistryJan Kochanowski University in KielceKielcePoland
  3. 3.Department of Organic Chemistry I, Faculty of ChemistryUniversity of the Basque Country UPV/EHUSan SebastiánSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  5. 5.Molecular Structure AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations