Amino Acids

pp 1–16 | Cite as

Carnosine protects cardiac myocytes against lipid peroxidation products

  • Jingjing Zhao
  • Dheeraj Kumar Posa
  • Vijay Kumar
  • David Hoetker
  • Amit Kumar
  • Smirthy Ganesan
  • Daniel W. Riggs
  • Aruni Bhatnagar
  • Michael F. Wempe
  • Shahid P. Baba
Original Article
Part of the following topical collections:
  1. Carnosine


Endogenous histidyl dipeptides such as carnosine (β-alanine-l-histidine) form conjugates with lipid peroxidation products such as 4-hydroxy-trans-2-nonenal (HNE and acrolein), chelate metals, and protect against myocardial ischemic injury. Nevertheless, it is unclear whether these peptides protect against cardiac injury by directly reacting with lipid peroxidation products. Hence, to examine whether changes in the structure of carnosine could affect its aldehyde reactivity and metal chelating ability, we synthesized methylated analogs of carnosine, balenine (β-alanine-Nτ-methylhistidine) and dimethyl balenine (DMB), and measured their aldehyde reactivity and metal chelating properties. We found that methylation of Nτ residue of imidazole ring (balenine) or trimethylation of carnosine backbone at Nτ residue of imidazole ring and terminal amine group dimethyl balenine (DMB) abolishes the ability of these peptides to react with HNE. Incubation of balenine with acrolein resulted in the formation of single product (m/z 297), whereas DMB did not react with acrolein. In comparison with carnosine, balenine exhibited moderate acrolein quenching capacity. The Fe2+ chelating ability of balenine was higher than that of carnosine, whereas DMB lacked chelating capacity. Pretreatment of cardiac myocytes with carnosine increased the mean lifetime of myocytes superfused with HNE or acrolein compared with balenine or DMB. Collectively, these results suggest that carnosine protects cardiac myocytes against HNE and acrolein toxicity by directly reacting with these aldehydes. This reaction involves both the amino group of β-alanyl residue and the imidazole residue of l-histidine. Methylation of these sites prevents or abolishes the aldehyde reactivity of carnosine, alters its metal-chelating property, and diminishes its ability to prevent electrophilic injury.


Acrolein Cardiac myocytes Histidyl dipeptides 4-Hydroxy-trans-2-nonenal 



We would like to thank Bioanalytical Core of the Diabetes and Obesity Center for biochemical analysis.


This work was supported by grants from the National Institutes of Health, R01HL122581-01 (SPB), R01HL55477 and GM103492 (AB).

Compliance with ethical standards

Conflict of Interest

All authors declare that no competing financial interest exists.

Ethical approval

All treatments and protocols were approved by the University of Louisville, Institutional Animal Care and Use Committee. The ethical approval number is 15387.


  1. Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65(7):757–765Google Scholar
  2. Aldini G, Carini M, Beretta G, Bradamante S, Facino RM (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction? Biochem Biophys Res Commun 298(5):699–706CrossRefGoogle Scholar
  3. Baba SP, Hoetker JD, Merchant M, Klein JB, Cai J, Barski OA, Conklin DJ, Bhatnagar A (2013) Role of aldose reductase in the metabolism and detoxification of carnosine–acrolein conjugates. J Biol Chem 288(39):28163–28179. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, Schmidtke VK, Brittian KR, Merchant ML, Conklin DJ, Jones SP, Bhatnagar A (2018) Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol 118:183–192. CrossRefPubMedGoogle Scholar
  5. Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65(7):789–797Google Scholar
  6. Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S (2013) Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 33(6):1162–1170. CrossRefPubMedGoogle Scholar
  7. Benderdour M, Charron G, DeBlois D, Comte B, Des Rosiers C (2003) Cardiac mitochondrial NADP + -isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem 278(46):45154–45159. CrossRefPubMedGoogle Scholar
  8. Benderdour M, Charron G, Comte B, Ayoub R, Beaudry D, Foisy S, Deblois D, Des Rosiers C (2004) Decreased cardiac mitochondrial NADP + -isocitrate dehydrogenase activity and expression: a marker of oxidative stress in hypertrophy development. Am J Physiol Heart Circ Physiol 287(5):H2122–2131. CrossRefPubMedGoogle Scholar
  9. Benedetti A, Fulceri R, Ferrali M, Ciccoli L, Esterbauer H, Comporti M (1982) Detection of carbonyl functions in phospholipids of liver microsomes in CCl4- and BrCCl3-poisoned rats. Biochim Biophys Acta 712(3):628–638CrossRefGoogle Scholar
  10. Benedetti A, Comporti M, Fulceri R, Esterbauer H (1984) Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids. Identification of 4,5-dihydroxydecenal. Biochim Biophys Acta 792(2):172–181CrossRefGoogle Scholar
  11. Bhatnagar A (1995) Electrophysiological effects of 4-hydroxynonenal, an aldehydic product of lipid peroxidation, on isolated rat ventricular myocytes. Circ Res 76(2):293–304CrossRefGoogle Scholar
  12. Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, Chung W, Boakye AA, Hoetker JD, Bhatnagar A, Delanghe J, Vanheel B, Veiga-da-Cunha M, Derave W, Everaert I (2016) Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by beta-alanine transamination. J Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93(4):1803–1845. CrossRefPubMedGoogle Scholar
  14. Brown CE, Antholine WE, Froncisz W (1980) Multiple forms of the copper(II)-carnosine complex. J Chem Soc Dalton Trans 4:590–596CrossRefGoogle Scholar
  15. Brown CE, Vidrine DW, Julian RL, Froncisz W (1982) Copper (II) dimers in solution: evidence for motional averaging of coupling tensors without chemical dissociation. J Chem Soc Dalton Trans 12:2371–2377CrossRefGoogle Scholar
  16. Canabady-Rochelle LL, Harscoat-Schiavo C, Kessler V, Aymes A, Fournier F, Girardet JM (2015) Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chem 183:129–135. CrossRefPubMedGoogle Scholar
  17. Carini M, Aldini G, Beretta G, Arlandini E, Facino RM (2003) Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry. J Mass Spectrom 38(9):996–1006. CrossRefPubMedGoogle Scholar
  18. Castro GJ, Bhatnagar A (1993) Effect of extracellular ions and modulators of calcium transport on survival of tert-butyl hydroperoxide exposed cardiac myocytes. Cardiovasc Res 27(10):1873–1881CrossRefGoogle Scholar
  19. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321(5895):1493–1495. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, Rokosh DG, Prough RA, Prabhu SD, Velayutham M, Zweier JL, Hoetker JD, Riggs DW, Srivastava S, Bolli R, Bhatnagar A (2015) Genetic deficiency of glutathione S-Transferase P increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res 117(5):437–449. CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B (2016) Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity (Silver Spring) 24(5):1027–1034. CrossRefGoogle Scholar
  22. Decker EA, Crum AD, Calvert JT (1992) Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J Agric Food Chem 40(5):756–759CrossRefGoogle Scholar
  23. Dobbie H, Kermack WO (1955) Complex-formation between polypeptides and metals. 2. The reaction between cupric ions and some dipeptides. Biochem J 59(2):246–257CrossRefGoogle Scholar
  24. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285(13):9346–9356. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, Nagahata Y, Marchitti S, Nishimaki K, Wolf AM, Nakanishi H, Hattori F, Vasiliou V, Adachi T, Ohsawa I, Taguchi R, Hirabayashi Y, Ohta S, Suematsu M, Ogawa S, Fukuda K (2009) Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res 105(11):1118–1127. CrossRefPubMedGoogle Scholar
  26. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128CrossRefGoogle Scholar
  27. Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39(5–6):185–191. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Freeman HC, Szymanski JT (1967) Crystallographic studies of metal-peptide complexes. V. (Beta-alanyl-l-histidinato)copper(II)dihydrate. Acta Crystallogr 22(3):406–417CrossRefGoogle Scholar
  29. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gomes KM, Campos JC, Bechara LR, Queliconi B, Lima VM, Disatnik MH, Magno P, Chen CH, Brum PC, Kowaltowski AJ, Mochly-Rosen D, Ferreira JC (2014) Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 103(4):498–508. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Halliwell BGJ (2015) Free radical in biology and medicine. Oxford University Press, OxfordCrossRefGoogle Scholar
  32. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334(18):1145–1149. CrossRefPubMedGoogle Scholar
  33. Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154. CrossRefPubMedGoogle Scholar
  34. Ishikawa T, Esterbauer H, Sies H (1986) Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J Biol Chem 261(4):1576–1581PubMedGoogle Scholar
  35. Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, Bhatnagar A, Prabhu SD (2011) Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 301(5):H2050–2060. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kato Y, Iwase M, Ichihara S, Kanazawa H, Hashimoto K, Noda A, Nagata K, Koike Y, Yokota M (2010) Beneficial effects of growth hormone-releasing peptide on myocardial oxidative stress and left ventricular dysfunction in dilated cardiomyopathic hamsters. Circ J 74(1):163–170CrossRefGoogle Scholar
  37. Keith RJ, Haberzettl P, Vladykovskaya E, Hill BG, Kaiserova K, Srivastava S, Barski O, Bhatnagar A (2009) Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chem Biol Interact 178(1–3):242–249. CrossRefPubMedGoogle Scholar
  38. Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Ledbetter A, Walsh L, Farraj A, Hazari M (2017) TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicol Appl Pharmacol 324:51–60. CrossRefPubMedGoogle Scholar
  39. Lenz GR, Martell AE (1964) Metal complexes of carnosine. Biochemistry 3:750–753CrossRefGoogle Scholar
  40. Liu YH, Carretero OA, Cingolani OH, Liao TD, Sun Y, Xu J, Li LY, Pagano PJ, Yang JJ, Yang XP (2005) Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 289(6):H2616–2623. CrossRefPubMedGoogle Scholar
  41. Moreau R, Heath SH, Doneanu CE, Lindsay JG, Hagen TM (2003) Age-related increase in 4-hydroxynonenal adduction to rat heart alpha-ketoglutarate dehydrogenase does not cause loss of its catalytic activity. Antioxid Redox Signal 5(5):517–527. CrossRefPubMedGoogle Scholar
  42. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47(5):469–484. CrossRefPubMedGoogle Scholar
  43. Okuma HAAE (1991) Effect of Temperature on the buffering capacities of histidine-related compounds and fish skeletal muscle. Nippon Suisan Gakkaishi 57(11):2101–2107CrossRefGoogle Scholar
  44. Orioli M, Vistoli G, Regazzoni L, Pedretti A, Lapolla A, Rossoni G, Canevotti R, Gamberoni L, Previtali M, Carini M, Aldini G (2011) Design, synthesis, ADME properties, and pharmacological activities of beta-alanyl-d-histidine (d-carnosine) prodrugs with improved bioavailability. Chem Med Chem 6(7):1269–1282. CrossRefPubMedGoogle Scholar
  45. Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30(4):277–290CrossRefGoogle Scholar
  46. Qin F, Simeone M, Patel R (2007) Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 43(2):271–281. CrossRefPubMedGoogle Scholar
  47. Sansbury BE, DeMartino AM, Xie Z, Brooks AC, Brainard RE, Watson LJ, DeFilippis AP, Cummins TD, Harbeson MA, Brittian KR, Prabhu SD, Bhatnagar A, Jones SP, Hill BG (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34(4):379–388. CrossRefPubMedGoogle Scholar
  49. Shinmura K, Bolli R, Liu SQ, Tang XL, Kodani E, Xuan YT, Srivastava S, Bhatnagar A (2002) Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res 91(3):240–246CrossRefGoogle Scholar
  50. Srivastava S, Harter TM, Chandra A, Bhatnagar A, Srivastava SK, Petrash JM (1998) Kinetic studies of FR-1, a growth factor-inducible aldo-keto reductase. Biochemistry 37(37):12909–12917. CrossRefPubMedGoogle Scholar
  51. Srivastava S, Watowich SJ, Petrash JM, Srivastava SK, Bhatnagar A (1999) Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 38(1):42–54. CrossRefPubMedGoogle Scholar
  52. Srivastava S, Chandrasekar B, Gu Y, Luo J, Hamid T, Hill BG, Prabhu SD (2007) Downregulation of CuZn-superoxide dismutase contributes to beta-adrenergic receptor-mediated oxidative stress in the heart. Cardiovasc Res 74(3):445–455. CrossRefPubMedGoogle Scholar
  53. Sun A, Cheng Y, Zhang Y, Zhang Q, Wang S, Tian S, Zou Y, Hu K, Ren J, Ge J (2014a) Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J Mol Cell Cardiol 71:92–104. CrossRefPubMedGoogle Scholar
  54. Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, Isse T, Kawamoto T, Fan H, Yang P, Akazawa H, Nagai T, Takano H, Ping P, Komuro I, Ge J (2014b) Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc 3(5):e000779. CrossRefPubMedPubMedCentralGoogle Scholar
  55. van der Kraaij AM, de Jonge HR, Esterbauer H, de Vente J, Steinbusch HW, Koster JF (1990) Cumene hydroperoxide, an agent inducing lipid peroxidation, and 4-hydroxy-2,3-nonenal, a peroxidation product, cause coronary vasodilatation in perfused rat hearts by a cyclic nucleotide independent mechanism. Cardiovasc Res 24(2):144–150CrossRefGoogle Scholar
  56. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):154–160. CrossRefPubMedGoogle Scholar
  57. Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y (2007) Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 100(7):1089–1098. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang P, Hou M, Li Y, Xu X, Barsoum M, Chen Y, Bache RJ (2009) NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart. Am J Physiol Heart Circ Physiol 296(3):H840–846. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jingjing Zhao
    • 1
    • 2
  • Dheeraj Kumar Posa
    • 1
    • 2
  • Vijay Kumar
    • 3
  • David Hoetker
    • 1
    • 2
  • Amit Kumar
    • 3
  • Smirthy Ganesan
    • 1
    • 2
  • Daniel W. Riggs
    • 1
    • 2
  • Aruni Bhatnagar
    • 1
    • 2
  • Michael F. Wempe
    • 3
  • Shahid P. Baba
    • 1
  1. 1.Department of Medicine, Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Medicine, Envirome InstituteUniversity of LouisvilleLouisvilleUSA
  3. 3.Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of ColoradoAuroraUSA

Personalised recommendations