Advertisement

Amino Acids

, Volume 51, Issue 2, pp 319–329 | Cite as

Synthesis and biological evaluation of quercetin and resveratrol peptidyl derivatives as potential anticancer and antioxidant agents

  • Ljiljana Mrkus
  • Jelena Batinić
  • Nina Bjeliš
  • Andreja JakasEmail author
Original Article
  • 199 Downloads

Abstract

Quercetin and resveratrol are polyphenolic compounds, members of the flavonoid and the stilbene family, respectively, both medicinally important as dietary anticancer and antioxidant agents. They are present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and are responsible for various health benefits. Different quercetin and resveratrol esters of Leu/Met-enkephalin and tetrapeptide Leu-Ser-Lys-Leu (LSKL) were synthesized as model systems for monitoring the influence of the peptides on biological activity of resveratrol and quercetin. General formula of the main peptidyl-quercetin derivatives is 2-[3-(aa)n-4-hydroxyphenyl]-3,5,7-tri-hydroxy-4H-1-benzopyran-4-on, and the general formula of the main peptidyl-resveratrol derivatives is (E)-5-[4-(aa)n)styryl]benzene-1,3-diol. The antioxidant and anticancer activities of prepared compounds were investigated. Significant anticancer activity was obtained for the LSKL-based both quercetin and resveratrol derivatives. All prepared compounds exhibit antioxidant activity, in particular quercetin derivative containing Met-enkephalin.

Keywords

Leucine enkephalin Methionine enkephalin Tetrapeptide LSKL Resveratrol Quercetin 

Notes

Acknowledgements

Authors gratefully acknowledge the contribution by the Ministry of Science, Education and Sports of Croatia grant No. 098-0982933-2936. The authors thank Dr. M. Kralj, I. Martin-Kleiner and A. M. Mikecin for evaluating of antiproliferative activity and for useful suggestions. The authors thank Mrs. L. Brkljačić for conduction of HPLC–MS–DPPH measurements. The authors thank also Prof. M. Cudic and Dr. M. Rodriguez for useful suggestions and comments.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

726_2018_2668_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3847 kb)

References

  1. Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, Husti Z, Juhasz V, Klausz G, Pap R, Saghy L, Varro A, Dolinsky V, Wang S, Rauniyar V, Hall D, Dyck JRB, Light PE (2014) Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol 171:92–106.  https://doi.org/10.1111/bph.12409 CrossRefPubMedGoogle Scholar
  2. Biasutto L, Zoratti M (2014) Prodrugs of quercetin and resveratrol: a strategy under development. Curr Drug Metab 15:77–95CrossRefPubMedGoogle Scholar
  3. Biasutto L, Marotta E, De Marchi U, Zoratti M, Paradisi C (2007) Ester-based precursors to increase the bioavailability of quercetin. J Med Chem 50:241–253.  https://doi.org/10.1021/jm060912x CrossRefPubMedGoogle Scholar
  4. Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schöneich C (2007) Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues. J Phys Chem B 111:9608–9620CrossRefPubMedGoogle Scholar
  5. Bourd-Boittin K, Bonnier D, Leyme A, Mari B, Tuffery P, Samson M, Ezan F, Baffet G, Theret N (2011) Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatol 54:2173–2184.  https://doi.org/10.1002/hep.24598 CrossRefGoogle Scholar
  6. Boyd MR, Paull KD (1995) Some practical consideration and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109CrossRefGoogle Scholar
  7. Canivenc-Lavier MC, Vernevaut MF, Totis M, Siess MH, Magdalou J, Suschetet M (1996) Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Toxicol 114:19–27CrossRefGoogle Scholar
  8. Çaylak E, Halıfeoğlu İ, Aydin S, Telo S, Bulmus O, Çelık H (2007) The effects of sulfur-containing compounds on total antioxidant capacity levels of liver, kidney and brain in lead-exposed rats. Turk Klin J Med Sci 27:823–828Google Scholar
  9. Dangles O, Fargeix G, Dufour C (1999) One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. J Chem Soc Perkin Trans 2:1387–1395.  https://doi.org/10.1039/A901460H CrossRefGoogle Scholar
  10. El Gharras H (2009) Polyphenols: food sources, properties and applications—a review. Int J Food Sci Tech 44:2512–2518.  https://doi.org/10.1111/j.1365-2621.2009.02077.x CrossRefGoogle Scholar
  11. Elias RJ, McClements DJ, Decker EA (2005) Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin in oil-in-water emulsions. J Agric Food Chem 53:10248–10253CrossRefPubMedGoogle Scholar
  12. Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206.  https://doi.org/10.4161/oxim.2.4.9112 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fourré I, Bergès J, Houée-Levin C (2010) Structural and topological studies of methionine radical cations in dipeptides: electron sharing in two-center three-electron bonds. J Phys Chem A 114:7359–7368CrossRefPubMedGoogle Scholar
  14. Frombaum M, Le Clanche S, Bonnefont-Rousselot D, Borderie D (2012) Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and ˙NO bioavailability: potential benefits to cardiovascular diseases. Biochimie 94:269–276.  https://doi.org/10.1016/j.biochi.2011.11.001 CrossRefPubMedGoogle Scholar
  15. Gao X, Wang B, Wei Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou ML, Huang M, Guo G, Huang N, ZhiYong Qiana ZY, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4:7021–7030CrossRefPubMedGoogle Scholar
  16. Horvat Š (2001) Opioid peptides and their glycoconjugates: structure-activity relationships. Curr Med Chem Cent Nerv Syst Agents 1:133–154.  https://doi.org/10.2174/1568015013358581 CrossRefGoogle Scholar
  17. Iacopini P, Baldi M, Storchi PL, Sebastiani L (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589–598CrossRefGoogle Scholar
  18. Karunakaran-Datt A, Kennepohl P (2009) Redox photochemistry of methionine by sulfur K-edge X-ray absorption spectroscopy: potential implications for cataract formation. J Am Chem Soc 131:3577–3582.  https://doi.org/10.1021/ja806946r CrossRefPubMedGoogle Scholar
  19. Kellici TF, Chatziathanasiadou MV, Lee M-S, Sayyad N, Geromichalou EG, Vrettos EI, Tsiailanis AD, Chi S-W, Geromichalos GD, Mavromoustakos T, Tzakos AG (2017) Rational design and structure–activity relationship studies of quercetin–amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Org Biomol Chem 15:7956–7976.  https://doi.org/10.1039/c7ob02045g CrossRefPubMedGoogle Scholar
  20. Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A (2016) Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients 8:529.  https://doi.org/10.3390/nu8090529 CrossRefPubMedCentralGoogle Scholar
  21. Kim MK, Park K-S, Yeo W-S, Choo H, Chong Y (2009) In vitro solubility, stability and permeability of novel quercetin–amino acid conjugates. Bioorg Med Chem 17:1164–1171CrossRefPubMedGoogle Scholar
  22. Koutsas C, Sarigrianni Y, Stavropoulos G, Liakopoulou-Kyriakides M (2007) Conjugation of resveratrol with RGD, and KGD derivatives. Protein Pept Lett 14:1014–1020.  https://doi.org/10.2174/092986607782541141 CrossRefPubMedGoogle Scholar
  23. Kunz H, Dombo B (1988) Solid phase synthesis of peptides and glycopeptides on polymeric supports with allylic anchor groups. Angew Chem Int Ed 27:711–713CrossRefGoogle Scholar
  24. Kyriakou E, Primikyri A, Charisiadis P, Katsoura M, Gerothanassis IP, Stamatis H, Tzakos AG (2012) Unexpected enzyme-catalyzed regioselective acylation of flavonoid aglycones and rapid product screening. Org Biomol Chem 10:1739–1742CrossRefPubMedGoogle Scholar
  25. Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu Y-T, Lu B-N, Xu L-N, Yin L-H, Wang X-N, Peng J-Y, Liu K-X (2010) The antioxidant activity and hypolipidemic activity of the total flavonoids from the fruit of Rosa laevigata Michx. Nat Sci 2:175–183.  https://doi.org/10.4236/ns.2010.23027 Google Scholar
  27. Massague J (2012) TGF-β signalling in context. Nat Rev Mol Cell Biol 13:616–630CrossRefPubMedPubMedCentralGoogle Scholar
  28. Massague J, Chen YG (2000) Controlling TGF-β signaling. Genes Dev 14:627–644PubMedGoogle Scholar
  29. Medicherla S, Li L, Ma JY, Kapoun AM, Gaspar NJ, Liu JW, Mangadu R, O’Young G, Protter AA, Schreiner GF, Wong DH, Higgins LS (2007) Antitumor activity of TGF-, inhibitor is dependent on the microenvironment. Anticancer Res 27:4149–4158PubMedGoogle Scholar
  30. Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709.  https://doi.org/10.1021/jo802716v CrossRefPubMedGoogle Scholar
  31. Nam J-S, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee S-S (2016) Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 21:108.  https://doi.org/10.3390/molecules21010108 CrossRefPubMedCentralGoogle Scholar
  32. Neuzillet C, Tijeras-Raballand A, Romain Cohen R, Cros J, Faivre S, Raymond E, Gramont A (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147:22–31CrossRefPubMedGoogle Scholar
  33. Niu G, Yin S, Xie S, Li Y, Nie D, Ma L, Wang X, Wu Y (2011) Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sinica 43:30–37.  https://doi.org/10.1093/abbs/gmq107 CrossRefGoogle Scholar
  34. Nuengchamnong N, Ingkaninan K (2010) On-line HPLC–MS–DPPH assay for the analysis of phenolic antioxidant compounds in fruit wine: Antidesma thwaitesianum Muell. Food Chem 118:147–152.  https://doi.org/10.1016/j.foodchem.2009.04.069 CrossRefGoogle Scholar
  35. Nuengchamnong N, Krittasilp K, Ingkaninan K (2009) Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC-ESI-MS coupled with DPPH assay. Food Chem 117:750–756.  https://doi.org/10.1016/j.foodchem.2009.04.071 CrossRefGoogle Scholar
  36. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302.  https://doi.org/10.1021/jf0502698 CrossRefPubMedGoogle Scholar
  37. Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 374:157–163.  https://doi.org/10.1042/BJ20030141 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ribeiro SMF, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of Thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J Biol Chem 274:13586–13593CrossRefPubMedGoogle Scholar
  39. Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Suzuki K, Narita Y, Shibui S, Kayama T, Kitanaka C (2013) Resveratrol promotes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells. Stem Cell Res 11:601–610.  https://doi.org/10.1016/j.scr.2013.04.004 CrossRefPubMedGoogle Scholar
  40. Schaafsma E, Hsieh T-C, Doonan BB, Pinto JT, Wu JM (2016) Anticancer activities of resveratrol in colorectal cancer. Biol Med (Aligarh) 8:1000317CrossRefGoogle Scholar
  41. Shi X, Zhao Y, Jiao Y, Shi T, Yang X (2013) ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS One 8(5):e64266.  https://doi.org/10.1371/journal.pone.0064266 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shih H, Pickwell GV, Quattrochi LC (2000) Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A2 enhancer. Arch Biochem Biophys 373:287–294CrossRefPubMedGoogle Scholar
  43. Smith JP, Conter RL, Bingaman SI, Harvey HA, Mauger DT, Ahmad M, Demers LM, Stanley WB, McLaughlin PJ, Zagon IS (2004) Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anticancer Drugs 15:203–209CrossRefPubMedGoogle Scholar
  44. Stephen H, Wrzesinski SF, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res 13:2007Google Scholar
  45. Subramanian L, Youssef S, Bhattacharya S, Kenealey J, Polans AS, van Ginkel PR (2010) Resveratrol: challenges in translation to the clinic—a critical discussion. Clin Cancer Res 16:5942–5948.  https://doi.org/10.1158/1078-0432.CCR-10-1486 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Torkova A, Koroleva O, Khrameeva E, Fedorova T, Tsentalovich M (2015) Structure-functional study of tyrosine and methionine dipeptides: an approach to antioxidant activity prediction. Int J Mol Sci 16:25353–25376.  https://doi.org/10.3390/ijms161025353 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr 3:8.  https://doi.org/10.3389/fnut.2016.00008 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Venkatadri R, Muni T, Iyer AK, Yakisich JS, Azad N (2016) Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis 7:e2104CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res 13:5262–5270CrossRefPubMedGoogle Scholar
  50. Xie X-S, Li F-Y, Liu H-C, Deng Y, Li Z, Fan J-M (2010) LSKL, a peptide antagonist of thrombospondin-1, attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction. Arch Pharm Res 33:275–284.  https://doi.org/10.1007/s12272-010-0213-6 CrossRefPubMedGoogle Scholar
  51. Yamashiro D, Li CH (1972) Preparation of Nα-Boc-Nε-p-Brz-lysine and Nα-Boc-O-m-BrBzl-tyrosine and their use for the solid phase synthesis of an octapeptide occuring in the HGH molecule. Int J Pept Protein Res 4:181–185.  https://doi.org/10.1111/j.1399-3011.1972.tb03418.x CrossRefPubMedGoogle Scholar
  52. Zagon IS, McLaughlin PJ (2014) Opioid growth factor and the treatment of human pancreatic cancer: a review. World J Gastroenterol 20:2218–2223CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang H, Zhang M, Yu L, Zhao Y, He N, Yang X (2012) Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem Toxicol 50:1589–1599.  https://doi.org/10.1016/j.fct.2012.01.025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations