Advertisement

Amino Acids

pp 1–22 | Cite as

Ethynylglycine synthon, a useful precursor for the synthesis of biologically active compounds: an update. Part II: synthetic uses of ethynylglycine synthon

  • Zohra Benfodda
  • David Benimélis
  • Gianna Reginato
  • Patrick Meffre
Invited Review
  • 11 Downloads

Abstract

The ethynylglycine synthon {(R)-2,2-dimethyl-3-(tert-butoxycarbonyl)-4-ethynyl-oxazolidine} is a chiral compound with valuable synthetic interest. An update (covering literature from 2005 to 2017) on the different synthetic utilities is reviewed and discussed.

Keywords

Synthesis Ethynylglycine synthon Terminal alkyne Metallation Metal-catalyzed coupling Cycloaddition 

Abbreviations

Ac

Acetyl

ACC synthase

1-Aminocyclopropane-1-carboxylate synthase

All

Allyl

Bn

Benzyl

Boc

tert-Butoxycarbonyl

Bu or n-Bu

n-Butyl

CAN

Cerium ammonium nitrate

Cbz

Benzyloxycarbonyl

dba

Dibenzylideneacetone

DCC

N,N′-Dicyclohexylcarbodiimide

DIBAL-H

Diisobutylalumino hydride

DIPA

Diisopropylamine

DIPEA

Diisopropylethylamine

DMAP

4-Dimethylaminopyridine

DMF

Dimethylformamide

DMP

Dess–Martin periodinane

ent-x

Enantiomer of compound x

Et

Ethyl

HMDS

Hexamethyldisilazane

IDO

Indoleamine 2,3-dioxygenase

LHMDS

Lithium bis(trimethylsilyl)amide

MCPBA

m-Chloroperoxybenzoic acid

Me

Methyl

Mts

2,4,6-Trimethylbenzenesulfonyl

MW

Microwave

NCS

N-Chlorosuccinimide

oDPPBA

2-(Diphenylphosphino)benzoic acid

oDPPB

2-(Diphenylphosphino)benzoate

Ph

Phenyl

PLP

Pyridoxal phosphate

PTSA

p-Toluenesulfonic acid

RCM

Ring-closing metathesis

SEM

2-(Trimethylsilyl)ethoxymethyl

TBAF

Tetrabutylammonium fluoride

TBAI

Tetrabutylammonium iodide

TBDMS

tert-butyldimethylsilyl

TBDPS

tert-butyldiphenylsilyl

t-Bu

tert-butyl

TEMPO

2,2,6,6-Tetramethylpiperidine 1-oxyl

TES

Triethylsilyl

Tf

Triflate

TFA

Trifluoroacetic acid

THF

Tetrahydrofuran

TMEDA

N,N,N′,N′-tetramethyl ethylenediamine

TMS

Trimethylsilyl

Ts

4-toluenesulfonyl

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Research subjects

This review is a compilation of the previous works performed by different authors. No animal or human was used or harmed in this work.

Informed consent

This manuscript is being submitted after consent was obtained from all authors, and all authors are aware of this manuscript submission.

References

  1. Alcaide B, Almendros P, Quirós MT, Fernández I (2013) Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein J Org Chem 9:818–826.  https://doi.org/10.3762/bjoc.9.93 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ayed C, Palmier S, Lubin-Germain N et al (2010a) Indium-mediated alkynylation of sugars: synthesis of C-glycosyl compounds bearing a protected amino alcohol moiety. Carbohydr Res 345:2566–2570.  https://doi.org/10.1016/j.carres.2010.07.033 CrossRefPubMedGoogle Scholar
  3. Ayed C, Picard J, Lubin-Germain N et al (2010b) Synthesis of alkynes and alkynyl iodides bearing a protected amino alcohol moiety as functionalized amino acids precursors. Sci China Chem 53:1921–1926.  https://doi.org/10.1007/s11426-010-4072-2 CrossRefGoogle Scholar
  4. Badarau E, Suzenet F, Fînaru A-L, Guillaumet G (2009) Synthesis of 3-amino-8-azachromans and 3-amino-7-azabenzofurans via Inverse electron demand Diels–Alder reaction. Eur J Org Chem 2009:3619–3627.  https://doi.org/10.1002/ejoc.200900191 CrossRefGoogle Scholar
  5. Belanger D, Tong X, Soumare S et al (2009) Cyclic peptide-polymer complexes and their self-assembly. Chem Eur J. 15:4428–4436.  https://doi.org/10.1002/chem.200802337 S4428/1-S4428/6 CrossRefPubMedGoogle Scholar
  6. Benfodda Z, Bénimélis D, Reginato G, Meffre P (2015) Ethynylglycine synthon, a useful precursor for the synthesis of biologically active compounds: an update. Amino Acids 47:271–279.  https://doi.org/10.1007/s00726-014-1902-0 CrossRefPubMedGoogle Scholar
  7. Boibessot T, Bénimèlis D, Jean M et al (2016a) Synthesis of a novel rhizobitoxine-like triazole-containing amino acid. Synlett 27:2685–2688.  https://doi.org/10.1055/s-0036-1588300 CrossRefGoogle Scholar
  8. Boibessot T, Bénimélis D, Meffre P, Benfodda Z (2016b) Advances in the synthesis of α-quaternary α-ethynyl α-amino acids. Amino Acids 48:2081–2101.  https://doi.org/10.1007/s00726-016-2276-2 CrossRefPubMedGoogle Scholar
  9. Bolsakova J, Jirgensons A (2016) Synthesis of α-Ethynyl Glycines. Eur J Org Chem 2016:4591–4602.  https://doi.org/10.1002/ejoc.201600253 CrossRefGoogle Scholar
  10. Brummond KM, Yan B (2008) Rhodium(I)-catalyzed cycloisomerization reaction of yne-allenamides: an approach to cyclic enamides. Synlett 2008:2303–2308.  https://doi.org/10.1055/s-2008-1078169 CrossRefGoogle Scholar
  11. Cabarrocas G, Rafel S, Ventura M, Villalgordo J (2000a) A new approach toward the stereoselective synthesis of novel quinolyl glycines: synthesis of the enantiomerically pure Quinolyl-β-amino alcohol precursors. Synlett 2000:0595–0598.  https://doi.org/10.1055/s-2000-6625 CrossRefGoogle Scholar
  12. Cabarrocas G, Ventura M, Maestro M et al (2000b) Reaction between hydrazines and chiral α-acetylenic ketones: synthesis of novel enantiomerically pure pyrazolyl-β-amino alcohols†. Tetrahedron Asymmetry 11:2483–2493.  https://doi.org/10.1016/S0957-4166(00)00204-4 CrossRefGoogle Scholar
  13. Cabarrocas G, Ventura M, Maestro M et al (2001) Synthesis of novel optically pure quinolyl-β-amino alcohol derivatives from 2-amino thiophenol and chiral α-acetylenic ketones and their IBX-mediated oxidative cleavage to N-Boc quinolyl carboxamides. Tetrahedron Asymmetry 12:1851–1863.  https://doi.org/10.1016/S0957-4166(01)00308-1 CrossRefGoogle Scholar
  14. Callahan JF, Khatana SS, Bhatnagar PK (2000) Stereoselective synthesis of diaminosuberic acid via a chiral alkynyl oxazolidine. Synth Commun 30:1213–1219.  https://doi.org/10.1080/00397910008087141 CrossRefGoogle Scholar
  15. Cameron S, Khambay BPS (1998) Stereospecific synthesis of the amino acid, (S)-2-amino-(Z)-3,5-hexadienoic acid. Tetrahedron Lett 39:1987–1990.  https://doi.org/10.1016/S0040-4039(98)00112-9 CrossRefGoogle Scholar
  16. Chinchilla R, Nájera C (2007) The sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107:874–922.  https://doi.org/10.1021/cr050992x CrossRefPubMedGoogle Scholar
  17. Chung JYL, Wasicak JT (1990) Synthesis of chiral α-acetylenic cyclic amines from α-amino acids: applications to differentially constrained oxotremorine analogues as muscarinic agents. Tetrahedron Lett 31:3957–3960.  https://doi.org/10.1016/S0040-4039(00)94471-X CrossRefGoogle Scholar
  18. Comas-Barceló J, Harrity JPA (2017) Metal acetylides in cycloaddition reactions. Synthesis 49:1168–1181.  https://doi.org/10.1055/s-0036-1588922 Google Scholar
  19. Crabbe P, Schlemper Elmer O, Kay Fair et al (1985) Allene Synthesis by organo-metallic reactions. Isr J Chem 26:147–151.  https://doi.org/10.1002/ijch.198500085 CrossRefGoogle Scholar
  20. Crisp GT, Jiang Y-L, Pullman PJ, De Savi C (1997) Elaboration of the side-chain of amino acid derivatives by palladium catalysed couplings. Tetrahedron 53:17489–17500.  https://doi.org/10.1016/S0040-4020(97)10197-1 CrossRefGoogle Scholar
  21. Dondoni A, Mariotti G, Marra A, Massi A (2001) Expeditious synthesis of β-linked glycosyl serine methylene isosteres (β-C-gly ser) via ethynylation of sugar lactones. Synthesis.  https://doi.org/10.1055/s-2001-18058 Google Scholar
  22. Erdsack J, Krause N (2007) Synthesis of furanomycin derivatives by gold-catalyzed cycloisomerization of α-hydroxyallenes. Synthesis 2007:3741–3750.  https://doi.org/10.1055/s-2007-990860 CrossRefGoogle Scholar
  23. Evidente A, Kornienko A, Cimmino A et al (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627.  https://doi.org/10.1039/C3NP70078J CrossRefPubMedGoogle Scholar
  24. Falorni M, Giacomelli G, Spanu E (1998) Synthesis of new α-amino- acids containing the isoxazole moiety. Tetrahedron Lett 39:9241–9244.  https://doi.org/10.1016/S0040-4039(98)02010-3 CrossRefGoogle Scholar
  25. Frydenvang K, Pickering DS, Greenwood JR et al (2010) Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid. J Med Chem 53:8354–8361.  https://doi.org/10.1021/jm101218a CrossRefPubMedGoogle Scholar
  26. Giacomelli G, De Luca L, Porcheddu A (2003) A method for generating nitrile oxides from nitroalkanes: a microwave assisted route for isoxazoles. Tetrahedron 59:5437–5440.  https://doi.org/10.1016/S0040-4020(03)00859-7 CrossRefGoogle Scholar
  27. Goswami K, Duttagupta I, Sinha S (2012a) Synthesis of optically active 2- and 3- indolylglycine derivatives and their oxygen analogues. J Org Chem 77:7081–7085.  https://doi.org/10.1021/jo300708h CrossRefPubMedGoogle Scholar
  28. Goswami K, Paul S, Bugde ST, Sinha S (2012b) Synthesis of optically active homotryptophan and its oxygen and sulfur analogues. Tetrahedron 68:280–286.  https://doi.org/10.1016/j.tet.2011.10.055 CrossRefGoogle Scholar
  29. Goswami K, Chakraborty A, Sinha S (2013) Synthesis of optically active selenium-containing isotryptophan, homoiso-tryptophan, and homotryptophan. Eur J Org Chem 2013:3645–3647.  https://doi.org/10.1002/ejoc.201300352 CrossRefGoogle Scholar
  30. Govek SP, Overman LE (2007) Total synthesis of (+)-asperazine. Tetrahedron 63:8499–8513.  https://doi.org/10.1016/j.tet.2007.05.127 CrossRefGoogle Scholar
  31. Guillarme S, Plé K, Haudrechy A (2006) Selective synthesis of α-C-(Alkynyl)-galactosides by an efficient tandem reaction. J Org Chem 71:1015–1017.  https://doi.org/10.1021/jo0519817 CrossRefPubMedGoogle Scholar
  32. Holmberg P, Sohn D, Leideborg R et al (2004) Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists. J Med Chem 47:3927–3930.  https://doi.org/10.1021/jm0498102 CrossRefPubMedGoogle Scholar
  33. Holmberg P, Tedenborg L, Rosqvist S, Johansson AM (2005) Novel 3-aminochromans as potential pharmacological tools for the serotonin 5-HT7 receptor. Bioorg Med Chem Lett 15:747–750.  https://doi.org/10.1016/j.bmcl.2004.11.013 CrossRefPubMedGoogle Scholar
  34. Huisgen R (1963) 1,3-Dipolar Cycloadditions. Past and Future. Angew Chem Int Ed Engl 2:565–598.  https://doi.org/10.1002/anie.196305651 CrossRefGoogle Scholar
  35. Katagiri K, Tori K, Kimura Y et al (1967) A new antibiotic. furanomycin, an isoleucine antagonist. J Med Chem 10:1149–1154.  https://doi.org/10.1021/jm00318a035 CrossRefPubMedGoogle Scholar
  36. Kavitha M, Mahipal B, Mainkar PS, Chandrasekhar S (2011) Click reaction on in situ generated β-azidostyrenes from cinnamic acid using CAN–NaN3: synthesis of N-styryl triazoles. Tetrahedron Lett 52:1658–1662.  https://doi.org/10.1016/j.tetlet.2011.01.129 CrossRefGoogle Scholar
  37. Khutorianskyi A, Chalyk B, Borysko P et al (2017) Difluoromethyl nitrile oxide (CF2HCNO): a neglected chemical reagent. Eur J Org Chem 2017:3935–3940.  https://doi.org/10.1002/ejoc.201700764 CrossRefGoogle Scholar
  38. Kumar P, Shukhman D, Laughlin ST (2016) A photocaged, cyclopropene-containing analog of the amino acid neurotransmitter glutamate. Tetrahedron Lett 57:5750–5752.  https://doi.org/10.1016/j.tetlet.2016.10.106 CrossRefGoogle Scholar
  39. Lin H, Kazmaier U (2007) Regioselective mo-catalyzed hydrostannations as key steps in the synthesis of functionalized amino alcohols and heterocycles. Eur J Org Chem 2007:2839–2843.  https://doi.org/10.1002/ejoc.200700126 CrossRefGoogle Scholar
  40. Mallampudi NA, Reddy GS, Maity S, Mohapatra DK (2017) Gold(I)-Catalyzed Cyclization for the Synthesis of 8-Hydroxy-3—substituted Isocoumarins: total Synthesis of Exserolide F. Org Lett 19:2074–2077.  https://doi.org/10.1021/acs.orglett.7b00673 CrossRefPubMedGoogle Scholar
  41. Mazuela J, Antonsson T, Johansson MJ et al (2017) Direct Synthesis of N-Alkyl Arylglycines by Organocatalytic Asymmetric Transfer Hydrogenation of N-Alkyl Aryl Imino Esters. Org Lett.  https://doi.org/10.1021/acs.orglett.7b02627 PubMedGoogle Scholar
  42. Meffre P, Le Goffic F (1996) β, γ-Alkynylα-amino acids: a synthetic challenge. Amino Acids 11:313–328.  https://doi.org/10.1007/BF00807939 CrossRefPubMedGoogle Scholar
  43. Meffre P, Gauzy L, Branquet E et al (1996) Synthesis of optically active β, γ-alkynylglycine derivatives. Tetrahedron 52:11215–11238.  https://doi.org/10.1016/0040-4020(96)00630-8 CrossRefGoogle Scholar
  44. Ohno H, Ando K, Hamaguchi H et al (2002) A highly cis-selective synthesis of 2-ethynylaziridines by intramolecular amination of chiral bromoallenes: improvement of stereoselectivity based on the computational investigation. J Am Chem Soc 124:15255–15266.  https://doi.org/10.1021/ja0262277 CrossRefPubMedGoogle Scholar
  45. Owens LD, Guggenheim S, Hilton JL (1968) Rhizobium-synthesized phytotoxin: an inhibitor of β-cystathionase in Salmonella typhimurium. Biochim Biophys Acta BBA Gen Subj 158:219–225.  https://doi.org/10.1016/0304-4165(68)90134-7 CrossRefGoogle Scholar
  46. Pulley SR, Sen S, Vorogushin A, Swanson E (1999) Diaryl ethers using fischer chromium carbene mediated benzannulation. Org Lett 1:1721–1723.  https://doi.org/10.1021/ol990949u CrossRefPubMedGoogle Scholar
  47. Pulley SR, Czakó B, Brown GD (2005) Synthesis of arylglycines via the Dötz benzannulation reaction. Tetrahedron Lett 46:9039–9042.  https://doi.org/10.1016/j.tetlet.2005.10.105 CrossRefGoogle Scholar
  48. Raji Reddy C, Krishna G, Kavitha N et al (2012) Access to 2,3-disubstituted benzofurans through one-pot acid-catalyzed nucleophilic substitution/TBAF-mediated oxacycloisomerization. Eur J Org Chem 2012:5381–5388.  https://doi.org/10.1002/ejoc.201200708 CrossRefGoogle Scholar
  49. Reginato G, Mordini A, Degl’Innocenti A, Caracciolo M (1995) Stereoselective synthesis of (R)-(−)-2,2-dimethyl-3-t-butoxycarbonyl-4-ethynyl-oxazolidine: a chiral building block for the synthesis of a new class of substituted alkynes. Tetrahedron Lett 36:8275–8278.  https://doi.org/10.1016/0040-4039(95)01725-w CrossRefGoogle Scholar
  50. Reginato G, Mordini A, Caracciolo M (1997) Synthetic Elaboration of the Side Chain of (R)-2,2-dimethyl-3-(tert-butoxycarbonyl)-4-ethynyloxazolidine: a new regio—and stereoselective strategy to δ-functionalized β-amino alcohols. J Org Chem 62:6187–6192.  https://doi.org/10.1021/jo970619s CrossRefGoogle Scholar
  51. Reginato G, Mordini A, Valacchi M (1998) A stereoselective approach to the synthesis of γ-silylated amino acids. Tetrahedron Lett 39:9545–9548.  https://doi.org/10.1016/S0040-4039(98)02120-0 CrossRefGoogle Scholar
  52. Reginato G, Mordini A, Valacchi M, Grandini E (1999) Silylcupration of (R)-2,2-Dimethyl-3-(tert-butoxycarbonyl)-4-ethynyloxazolidine: a stereoselective approach to the synthesis of γ-silylated saturated and unsaturated α-amino acids. J Org Chem 64:9211–9216.  https://doi.org/10.1021/jo991272r CrossRefGoogle Scholar
  53. Reginato G, Mordini A, Verrucci M et al (2000) A new approach to non racemic saturated and unsaturated 5-aminoalkyl methyl ketones. Tetrahedron Asymmetry 11:3759–3768.  https://doi.org/10.1016/S0957-4166(00)00335-9 CrossRefGoogle Scholar
  54. Reginato G, Gaggini F, Mordini A, Valacchi M (2005a) Stereoselective synthesis of dienylamines: from amino acids to E-alkene dipeptide isosters. Tetrahedron 61:6791–6800.  https://doi.org/10.1016/j.tet.2005.04.068 CrossRefGoogle Scholar
  55. Reginato G, Meffre P, Gaggini F (2005b) Ethynylglycine synthon from Garner’s aldehyde: a useful precursor for the synthesis of non-natural amino acids. Amino Acids 29:81–87.  https://doi.org/10.1007/s00726-005-0184-y CrossRefPubMedGoogle Scholar
  56. Reginato G, Mordini A, Meffre P et al (2006) New unsaturated amino acids containing an allylsilane moiety on the lateral chain. Tetrahedron Asymmetry 17:922–926.  https://doi.org/10.1016/j.tetasy.2006.02.017 CrossRefGoogle Scholar
  57. Röhrig UF, Awad L, Grosdidier A et al (2010) Rational design of indoleamine 2,3-dioxygenase inhibitors. J Med Chem 53:1172–1189.  https://doi.org/10.1021/jm9014718 CrossRefPubMedGoogle Scholar
  58. Serrat X, Cabarrocas G, Rafel S et al (1999) A highly efficient and straightforward stereoselective synthesis of novel chiral α-acetylenic ketones. Tetrahedron Asymmetry 10:3417–3430.  https://doi.org/10.1016/S0957-4166(99)00357-2 CrossRefGoogle Scholar
  59. Spangenberg T, Schoenfelder A, Breit B, Mann A (2010) 1,2-Diastereoselective C–C bond-forming reactions for the synthesis of chiral β-branched α-amino acids. Eur J Org Chem 2010:6005–6018.  https://doi.org/10.1002/ejoc.201000865 CrossRefGoogle Scholar
  60. Stecko S, Mames A, Furman B, Chmielewski M (2009) Asymmetric kinugasa reaction of cyclic nitrones and nonracemic acetylenes. J Org Chem 74:3094–3100.  https://doi.org/10.1021/jo900121x CrossRefPubMedGoogle Scholar
  61. Sugawara M, Okazaki S, Nukui N et al (2006) Rhizobitoxine modulates plant–microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388.  https://doi.org/10.1016/j.biotechadv.2006.01.004 CrossRefPubMedGoogle Scholar
  62. Totobenazara J, Burke AJ (2015) New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett 56:2853–2859.  https://doi.org/10.1016/j.tetlet.2015.03.136 CrossRefGoogle Scholar
  63. Usuki T, Yamada H, Hayashi T et al (2012) Total synthesis of COPD biomarker desmosine that crosslinks elastin. Chem Commun 48:3233–3235.  https://doi.org/10.1039/C2CC17958J CrossRefGoogle Scholar
  64. von Nussbaum F, Brands M, Hinzen B et al (2006) Antibacterial Natural Products in Medicinal Chemistry—Exodus or Revival? Angew Chem Int Ed 45:5072–5129.  https://doi.org/10.1002/anie.200600350 CrossRefGoogle Scholar
  65. Wzorek JS, Knöpfel TF, Sapountzis I, Evans DA (2012) A macrocyclic approach to tetracycline natural products. investigation of transannular alkylations and michael additions. Org Lett 14:5840–5843.  https://doi.org/10.1021/ol302691j CrossRefPubMedGoogle Scholar
  66. Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61.  https://doi.org/10.1007/BF00035055 CrossRefGoogle Scholar
  67. Yamada H, Hayashi T, Usuki T (2015) Total synthesis of the COPD biomarker desmosine via stepwise sonogashira Cross-coupling reactions. Bull Chem Soc Jpn 88:673–683.  https://doi.org/10.1246/bcsj.20140394 CrossRefGoogle Scholar
  68. Yamakawa T, Ideue E, Shimokawa J, Fukuyama T (2010) Total synthesis of tryprostatins A and B. Angew Chem Int Ed 49:9262–9265.  https://doi.org/10.1002/anie.201004963 CrossRefGoogle Scholar
  69. Yamakawa T, Ideue E, Iwaki Y et al (2011) Total synthesis of tryprostatin A and B. Tetrahedron 67:6547–6560.  https://doi.org/10.1016/j.tet.2011.05.112 CrossRefGoogle Scholar
  70. Yamakawa T, Ideue E, Shimokawa J, Fukuyama T (2014) Corrigendum: total synthesis of tryprostatins A and B. Angew Chem Int Ed 53:8808–8808.  https://doi.org/10.1002/anie.201401055 CrossRefGoogle Scholar
  71. Yamashita Y, Saito Y, Imaizumi T, Kobayashi S (2014) A Lewis acid/metal amide hybrid as an efficient catalyst for carbon-carbon bond formation. Chem Sci 5:3958–3962.  https://doi.org/10.1039/C4SC01332H CrossRefGoogle Scholar
  72. Yanada R, Obika S, Kobayashi Y et al (2005) Stereoselective synthesis of 3-alkylideneoxindoles using tandem indium-mediated carbometallation and palladium-catalyzed cross-coupling reactions. Adv Synth Catal 347:1632–1642.  https://doi.org/10.1002/adsc.200505147 CrossRefGoogle Scholar
  73. Yasuta T, Satoh S, Minamisawa K (1999) New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNIV. NIMES, EA7352 ChromeNîmes Cedex 1France
  2. 2.ICCOM—CNRSesto FiorentinoItaly

Personalised recommendations