Advertisement

Amino Acids

pp 1–9 | Cite as

Carnosine supplementation reduces plasma soluble transferrin receptor in healthy overweight or obese individuals: a pilot randomised trial

  • Estifanos Baye
  • Jozef Ukropec
  • Maximilian P. J. de Courten
  • Timea Kurdiova
  • Patrick Krumpolec
  • José-Manuel Fernández-Real
  • Giancarlo Aldini
  • Barbara Ukropcova
  • Barbora de Courten
Original Article
  • 41 Downloads
Part of the following topical collections:
  1. Carnosine

Abstract

Abnormalities of iron homeostasis have been linked to insulin resistance, type 2 diabetes and cardiovascular disease. Carnosine, an over-the-counter food supplement with chelating properties, has been shown to decrease serum iron and improve glucose metabolism in diabetic rodents. We have previously demonstrated that carnosine supplementation prevented worsening of glucose metabolism in healthy overweight and obese middle-aged adults. Yet, the impact of carnosine on markers of iron metabolism in humans has not been investigated. We aimed to determine whether carnosine supplementation has an effect on iron parameters in overweight and obese, otherwise healthy adults. We included 26 participants, who were randomly allocated to receive 1 g carnosine (n = 14) or identical placebo (n = 12) twice daily for 12 weeks. Iron parameters including iron, ferritin, transferrin, soluble transferrin receptor, total iron binding capacity and iron saturation were measured in serum or plasma by standard commercial assays. Carnosine supplementation decreased plasma soluble transferrin receptor compared to placebo (mean change difference ± standard error: − 0.07 ± 0.03 mg/l, p = 0.04). None of the other iron parameters were different between carnosine and placebo groups. At follow-up, soluble transferrin receptor was associated inversely with urinary carnosine concentrations and positively with serum carnosinase-1 activity (both p < 0.02). Our findings suggest that carnosine may modulate iron metabolism in high-risk groups which could ameliorate insulin resistance and prevent type 2 diabetes. Larger human clinical trials are required to confirm our results.

Keywords

Iron metabolism Soluble transferrin receptor Carnosine Insulin resistance Type 2 diabetes 

Notes

Acknowledgements

We thank the volunteers for their participation in the trial. We also thank Professor Wim Derave for performing the carnosinase measurements. This study was supported by the Grant Agency of the Slovak Academy of Sciences VEGA 2/0107/18, Slovak Research and Development Agency SRDA (APVV) 15/0253, Royal Australasian College of Physicians, Diabetes Australia Research Trust and Foundation for High Blood Pressure Research. Carnosine supplement was received from Flamma SPa, Italy. EB is a recipient of the Monash Graduate and Monash International Postgraduate Scholarships. BdC is supported by a National Heart Foundation Future Leader Fellowship (100864).

Author contributions

EB conceived the study idea, performed data analysis and interpretation, wrote first draft of the manuscript and revised subsequent drafts until publication. BdC designed the study, contributed to the study idea and data analysis, and critically reviewed the manuscript. MPJdC co-designed the study with BdC and contributed to the review of the manuscript. JU & BU assisted with design of the study, performed all clinical measurement and contributed to review of the manuscript. TK & PK contributed to the clinical study performance and data collection. JMFR contributed to review of the manuscript. GA performed to laboratory measurement and reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

References

  1. Adelmann K, Frey D, Riedl E, Koeppel H, Pfister F, Peters V, Schmitt CP, Sternik P, Hofmann S, Zentgraf HW, Navis G, van den Born J, Bakker SJ, Kramer BK, Yard BA, Hauske SJ (2012) Different conformational forms of serum carnosinase detected by a newly developed sandwich ELISA for the measurements of carnosinase concentrations. Amino Acids 43(1):143–151.  https://doi.org/10.1007/s00726-012-1244-8 CrossRefPubMedGoogle Scholar
  2. Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, Yeum KJ, Negrisoli G, Carini M (2011) The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 15(6):1339–1354.  https://doi.org/10.1111/j.1582-4934.2010.01101.x CrossRefPubMedGoogle Scholar
  3. Aldini G, Carini M, Yeum KJ, Vistoli G (2014) Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radic Biol Med 69:145–156.  https://doi.org/10.1016/j.freeradbiomed.2014.01.017 CrossRefPubMedGoogle Scholar
  4. Alhamdani MS, Al-Azzawie HF, Abbas FK (2007) Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit Dial Int 27(1):86–89PubMedGoogle Scholar
  5. Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B (2016) Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 48(5):1131–1149.  https://doi.org/10.1007/s00726-016-2208-1 CrossRefPubMedGoogle Scholar
  6. Baye E, Ukropec J, de Courten MPJ, Vallova S, Krumpolec P, Kurdiova T, Aldini G, Ukropcova B, de Courten B (2017) Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep 7(1):17458.  https://doi.org/10.1038/s41598-017-17577-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93(4):1803–1845.  https://doi.org/10.1152/physrev.00039.2012 CrossRefPubMedGoogle Scholar
  8. Choudhuri S, Dutta D, Sen A, Chowdhury IH, Mitra B, Mondal LK, Saha A, Bhadhuri G, Bhattacharya B (2013) Role of N-epsilon- carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus. Mol Vis 19:100–113PubMedPubMedCentralGoogle Scholar
  9. Coimbra S, Catarino C, Nascimento H, Ines Alves A, Filipa Medeiros A, Bronze-da-Rocha E, Costa E, Rocha-Pereira P, Aires L, Seabra A, Mota J, Ferreira Mansilha H, Rego C, Santos-Silva A, Belo L (2017) Physical exercise intervention at school improved hepcidin, inflammation, and iron metabolism in overweight and obese children and adolescents. Pediatr Res 82(5):781–788.  https://doi.org/10.1038/pr.2017.139 CrossRefPubMedGoogle Scholar
  10. Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA, Luo B, Soesanto Y, Rienhoff H, Abel ED, McClain DA (2010) Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab 298(6):E1236–E1243.  https://doi.org/10.1152/ajpendo.00022.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crielaard BJ, Lammers T, Rivella S (2017) Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov.  https://doi.org/10.1038/nrd.2016.248 PubMedPubMedCentralGoogle Scholar
  12. de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B (2016) Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity (Silver Spring) 24(5):1027–1034.  https://doi.org/10.1002/oby.21434 CrossRefGoogle Scholar
  13. Elbarbary NS, Ismail EAR, El-Naggar AR, Hamouda MH, El-Hamamsy M (2017) The effect of 12 weeks carnosine supplementation on renal functional integrity and oxidative stress in pediatric patients with diabetic nephropathy: a randomized placebo-controlled trial. Pediatr Diabetes.  https://doi.org/10.1111/pedi.12564 PubMedGoogle Scholar
  14. Everaert I, Taes Y, De Heer E, Baelde H, Zutinic A, Yard B, Sauerhofer S, Vanhee L, Delanghe J, Aldini G, Derave W (2012) Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am J Physiol Renal Physiol 302(12):F1537–F1544.  https://doi.org/10.1152/ajprenal.00084.2012 CrossRefPubMedGoogle Scholar
  15. Fernandez-Cao JC, Arija V, Aranda N, Basora J, Diez-Espino J, Estruch R, Fito M, Corella D, Salas-Salvado J (2017) Soluble transferrin receptor and risk of type 2 diabetes in the obese and nonobese. Eur J Clin Invest 47(3):221–230.  https://doi.org/10.1111/eci.12725 CrossRefPubMedGoogle Scholar
  16. Fernandez-Real JM, Ricart-Engel W, Arroyo E, Balanca R, Casamitjana-Abella R, Cabrero D, Fernandez-Castaner M, Soler J (1998) Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 21(1):62–68CrossRefPubMedGoogle Scholar
  17. Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51(8):2348–2354CrossRefPubMedGoogle Scholar
  18. Fernandez-Real JM, Moreno JM, Lopez-Bermejo A, Chico B, Vendrell J, Ricart W (2007) Circulating soluble transferrin receptor according to glucose tolerance status and insulin sensitivity. Diabetes Care 30(3):604–608.  https://doi.org/10.2337/dc06-1138 CrossRefPubMedGoogle Scholar
  19. Fernandez-Real JM, Izquierdo M, Moreno-Navarrete JM, Gorostiaga E, Ortega F, Martinez C, Idoate F, Ricart W, Ibanez J (2009) Circulating soluble transferrin receptor concentration decreases after exercise-induced improvement of insulin sensitivity in obese individuals. Int J Obes (Lond) 33(7):768–774.  https://doi.org/10.1038/ijo.2009.99 CrossRefGoogle Scholar
  20. Freixenet N, Remacha A, Berlanga E, Caixas A, Gimenez-Palop O, Blanco-Vaca F, Bach V, Baiget M, Sanchez Y, Felez J, Gonzalez-Clemente JM (2009) Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. Clin Chim Acta 400(1–2):111–116.  https://doi.org/10.1016/j.cca.2008.10.019 CrossRefPubMedGoogle Scholar
  21. Gillum RF (2001) Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men—the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 25(5):639–645.  https://doi.org/10.1038/sj.ijo.0801561 CrossRefPubMedGoogle Scholar
  22. Gong L, Yuan F, Teng J, Li X, Zheng S, Lin L, Deng H, Ma G, Sun C, Li Y (2014) Weight loss, inflammatory markers, and improvements of iron status in overweight and obese children. J Pediatr 164(4):795–800.e792.  https://doi.org/10.1016/j.jpeds.2013.12.004 CrossRefPubMedGoogle Scholar
  23. Heinegard D, Tiderstrom G (1973) Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta 43(3):305–310CrossRefPubMedGoogle Scholar
  24. Houjeghani S, Kheirouri S, Faraji E, Jafarabadi MA (2017) l-carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products and tumor necrosis factor alpha levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial. Nutr Res.  https://doi.org/10.1016/j.nutres.2017.11.003 PubMedGoogle Scholar
  25. Johnson D, Bayele H, Johnston K, Tennant J, Srai SK, Sharp P (2004) Tumour necrosis factor alpha regulates iron transport and transporter expression in human intestinal epithelial cells. FEBS Lett 573(1–3):195–201.  https://doi.org/10.1016/j.febslet.2004.07.081 CrossRefPubMedGoogle Scholar
  26. Lecube A, Carrera A, Losada E, Hernandez C, Simo R, Mesa J (2006) Iron deficiency in obese postmenopausal women. Obesity (Silver Spring) 14(10):1724–1730.  https://doi.org/10.1038/oby.2006.198 CrossRefGoogle Scholar
  27. Lecube A, Hernandez C, Pelegri D, Simo R (2008) Factors accounting for high ferritin levels in obesity. Int J Obes (Lond) 32(11):1665–1669.  https://doi.org/10.1038/ijo.2008.154 CrossRefGoogle Scholar
  28. Liu WH, Liu TC, Yin MC (2008) Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem Toxicol 46(5):1503–1509.  https://doi.org/10.1016/j.fct.2007.12.013 CrossRefPubMedGoogle Scholar
  29. Liu Q, Sun L, Tan Y, Wang G, Lin X, Cai L (2009) Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr Med Chem 16(1):113–129CrossRefPubMedGoogle Scholar
  30. Macdougall IC, Hutton RD, Cavill I, Coles GA, Williams JD (1989) Poor response to treatment of renal anaemia with erythropoietin corrected by iron given intravenously. BMJ 299(6692):157–158CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mast AE, Blinder MA, Gronowski AM, Chumley C, Scott MG (1998) Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem 44(1):45–51PubMedGoogle Scholar
  32. Meng G, Yang H, Bao X, Zhang Q, Liu L, Wu H, Du H, Xia Y, Shi H, Guo X, Liu X, Li C, Su Q, Gu Y, Fang L, Yu F, Sun S, Wang X, Zhou M, Jia Q, Guo Q, Song K, Huang G, Wang G, Wu Y, Niu K (2017) Increased serum ferritin levels are independently related to incidence of prediabetes in adult populations. Diabetes Metab 43(2):146–153.  https://doi.org/10.1016/j.diabet.2016.07.028 CrossRefPubMedGoogle Scholar
  33. Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A, Joost HG, Schulze MB, Pischon T (2012) Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 55(10):2613–2621.  https://doi.org/10.1007/s00125-012-2633-y CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mozdzan M, Szemraj J, Rysz J, Nowak D (2005) Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions. Basic Clin Pharmacol Toxicol 96(5):352–360.  https://doi.org/10.1111/j.1742-7843.2005.pto_03.x CrossRefPubMedGoogle Scholar
  35. Nagai R, Murray DB, Metz TO, Baynes JW (2012) Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 61(3):549–559.  https://doi.org/10.2337/db11-1120 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Orban E, Schwab S, Thorand B, Huth C (2014) Association of iron indices and type 2 diabetes: a meta-analysis of observational studies. Diabetes Metab Res Rev 30(5):372–394.  https://doi.org/10.1002/dmrr.2506 CrossRefPubMedGoogle Scholar
  37. Oshiro S, Morioka MS, Kikuchi M (2011) Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci 2011:378278.  https://doi.org/10.1155/2011/378278 PubMedPubMedCentralGoogle Scholar
  38. Peters V, Schmitt CP, Weigand T, Klingbeil K, Thiel C, van den Berg A, Calabrese V, Nawroth P, Fleming T, Forsberg E, Wagner AH, Hecker M, Vistoli G (2017) Allosteric inhibition of carnosinase (CN1) by inducing a conformational shift. J Enzyme Inhib Med Chem 32(1):1102–1110.  https://doi.org/10.1080/14756366.2017.1355793 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Podmore C, Meidtner K, Schulze MB, Scott RA, Ramond A, Butterworth AS, Di Angelantonio E, Danesh J, Arriola L, Barricarte A, Boeing H, Clavel-Chapelon F, Cross AJ, Dahm CC, Fagherazzi G, Franks PW, Gavrila D, Grioni S, Gunter MJ, Gusto G, Jakszyn P, Katzke V, Key TJ, Kuhn T, Mattiello A, Nilsson PM, Olsen A, Overvad K, Palli D, Quiros JR, Rolandsson O, Sacerdote C, Sanchez-Cantalejo E, Slimani N, Sluijs I, Spijkerman AM, Tjonneland A, Tumino R, van der DL A, van der Schouw YT, Feskens EJ, Forouhi NG, Sharp SJ, Riboli E, Langenberg C, Wareham NJ (2016) Association of multiple biomarkers of iron metabolism and type 2 diabetes: the EPIC-interact study. Diabetes Care 39(4):572–581.  https://doi.org/10.2337/dc15-0257 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Price DL, Rhett PM, Thorpe SR, Baynes JW (2001) Chelating activity of advanced glycation end-product inhibitors. J Biol Chem 276(52):48967–48972.  https://doi.org/10.1074/jbc.M108196200 CrossRefPubMedGoogle Scholar
  41. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB (2009a) The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 1790(7):671–681.  https://doi.org/10.1016/j.bbagen.2008.04.005 CrossRefPubMedGoogle Scholar
  42. Rajpathak SN, Negassa A, Kabat GC, Wylie-Rosett J, Rohan TE, Crandall J, Diabetes Prevention Program Research G (2009b) Elevated body iron stores predict the conversion from impaired glucose tolerance to type 2 diabetes. Diabetes Obes Metab 11(5):472–479.  https://doi.org/10.1111/j.1463-1326.2008.00985.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Regazzoni L, de Courten B, Garzon D, Altomare A, Marinello C, Jakubova M, Vallova S, Krumpolec P, Carini M, Ukropec J, Ukropcova B, Aldini G (2016) A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep 6:27224.  https://doi.org/10.1038/srep27224 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sharma AP, McKenna AM, Lepage N, Nieuwenhuys E, Filler G (2009) Relationships among serum iron, inflammation, and body mass index in children. Adv Pediatr 56:135–144.  https://doi.org/10.1016/j.yapd.2009.08.014 CrossRefPubMedGoogle Scholar
  45. Simcox JA, McClain DA (2013) Iron and diabetes risk. Cell Metab 17(3):329–341.  https://doi.org/10.1016/j.cmet.2013.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Skikne BS (2008) Serum transferrin receptor. Am J Hematol 83(11):872–875.  https://doi.org/10.1002/ajh.21279 CrossRefPubMedGoogle Scholar
  47. Soliman KM, Mohamed AM, Metwally NS (2007) Attenuation of some metabolic deteriorations induced by diabetes mellitus using carnosine. J Appl Sci 7:2252–2260CrossRefGoogle Scholar
  48. Souto JC, Remacha A, Buil A, Almasy L, Blangero J, Fontcuberta J (2003) Genetic determinants of iron metabolism plasma phenotypes and their relationship with risk of thrombosis. Haematologica 88(12):1436–1438PubMedGoogle Scholar
  49. Speeckaert MM, Speeckaert R, Delanghe JR (2010) Biological and clinical aspects of soluble transferrin receptor. Crit Rev Clin Lab Sci 47(5–6):213–228.  https://doi.org/10.3109/10408363.2010.550461 CrossRefPubMedGoogle Scholar
  50. Tsai SJ, Kuo WW, Liu WH, Yin MC (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58(21):11510–11516.  https://doi.org/10.1021/jf103258p CrossRefPubMedGoogle Scholar
  51. Tsuji Y, Miller LL, Miller SC, Torti SV, Torti FM (1991) Tumor necrosis factor-alpha and interleukin 1-alpha regulate transferrin receptor in human diploid fibroblasts. Relationship to the induction of ferritin heavy chain. J Biol Chem 266(11):7257–7261PubMedGoogle Scholar
  52. Tuomainen TP, Loft S, Nyyssonen K, Punnonen K, Salonen JT, Poulsen HE (2007) Body iron is a contributor to oxidative damage of DNA. Free Radic Res 41(3):324–328.  https://doi.org/10.1080/10715760601091642 CrossRefPubMedGoogle Scholar
  53. Velez S, Nair NG, Reddy VP (2008) Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants. Colloids Surf B Biointerfaces 66(2):291–294.  https://doi.org/10.1016/j.colsurfb.2008.06.012 CrossRefPubMedGoogle Scholar
  54. Vlassara H (2001) The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 17(6):436–443CrossRefPubMedGoogle Scholar
  55. Yan SL, Wu ST, Yin MC, Chen HT, Chen HC (2009) Protective effects from carnosine and histidine on acetaminophen-induced liver injury. J Food Sci 74(8):H259–H265.  https://doi.org/10.1111/j.1750-3841.2009.01330.x CrossRefPubMedGoogle Scholar
  56. Zhang S, Ntasis E, Kabtni S, van den Born J, Navis G, Bakker SJ, Kramer BK, Yard BA, Hauske SJ (2016) Hyperglycemia does not affect iron mediated toxicity of cultured endothelial and renal tubular epithelial cells: influence of l-carnosine. J Diabetes Res 2016:8710432.  https://doi.org/10.1155/2016/8710432 PubMedGoogle Scholar
  57. Zheng Y, Li XK, Wang Y, Cai L (2008) The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 32(1–2):135–145.  https://doi.org/10.1080/03630260701727077 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Estifanos Baye
    • 1
  • Jozef Ukropec
    • 2
  • Maximilian P. J. de Courten
    • 3
  • Timea Kurdiova
    • 2
  • Patrick Krumpolec
    • 2
  • José-Manuel Fernández-Real
    • 4
  • Giancarlo Aldini
    • 5
  • Barbara Ukropcova
    • 2
    • 6
    • 7
  • Barbora de Courten
    • 1
  1. 1.Monash Centre for Health Research and Implementation, School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
  2. 2.Institute of Experimental Endocrinology, Biomedical Research CentreSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Centre for Chronic Disease, College of Health and BiomedicineVictoria UniversityMelbourneAustralia
  4. 4.Department of Diabetes, Endocrinology and NutritionBiomedical Research Institute of Girona (IDIBGI)GironaSpain
  5. 5.Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
  6. 6.Institute of Pathological Physiology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  7. 7.Faculty of Physical Education and SportsComenius UniversityBratislavaSlovakia

Personalised recommendations