Advertisement

Amino Acids

, Volume 50, Issue 8, pp 1121–1129 | Cite as

A fusion antitumor peptide regulates proliferation and apoptosis of endothelial cells

  • Yifeng Xu
  • Xu Qiang
  • Lijun Xing
  • Hong Wang
  • Juan Zhang
  • Fang Zhang
  • Bilgen Caliskan
  • Min Wang
  • Zheng Qiu
Original Article
  • 106 Downloads

Abstract

The present research has been carried out to elicit the mechanism of antiangiogenic activity of a fusion peptide P2. Peptide P2 was designed by the connection of a heptapeptide MMP inhibitor to ES-2, a fragment of Endostatin. In a previous study, P2 demonstrated strong antiangiogenic and antitumor effect, and the current work explains the antiangiogenic mechanism of P2 through endothelial cell proliferation and apoptosis. In our study, it was shown that P2 inhibited HUVECs proliferation at a low serum concentration and this effect might be achieved through arresting cell cycle by decreasing the expression level of Cyclin D1. In addition, P2 was found to induce apoptosis of HUVECs. Using Western blot, it was indicated that P2 induced the cleavage of Caspase-3, the hallmark protease of apoptosis. The activation and expression of the upstream regulator Caspase-9 can also be affected by P2 treatment. Furthermore, P2 reduced the protein level of antiangiogenic factors Bcl-xL and Bcl-2. These results revealed that P2 regulates endothelial cell apoptosis through intrinsic apoptotic pathway.

Keywords

Fusion peptide Antiangiogenic mechanism Endothelial cell proliferation Endothelial apoptosis 

Notes

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (Grant Nos. 81301902 and 81773837) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Informed consent

All authors read and approved the final manuscript.

References

  1. Addison CL, Nor JE, Zhao H, Linn SA, Polverini PJ, Delaney CE (2005) The response of VEGF-stimulated endothelial cells to angiostatic molecules is substrate-dependent BMC cell biology 6:38.  https://doi.org/10.1186/1471-2121-6-38 PubMedCrossRefGoogle Scholar
  2. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 104:20262–20267.  https://doi.org/10.1073/pnas.0706438104 CrossRefPubMedGoogle Scholar
  3. Basset P et al (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704.  https://doi.org/10.1038/348699a0 CrossRefPubMedGoogle Scholar
  4. Brown PD, Bloxidge RE, Stuart NS, Gatter KC, Carmichael J (1993) Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst 85:574–578CrossRefPubMedGoogle Scholar
  5. Campo E, Merino MJ, Tavassoli FA, Charonis AS, Stetler-Stevenson WG, Liotta LA (1992) Evaluation of basement membrane components and the 72 kDa type IV collagenase in serous tumors of the ovary. Am J Surg Pathol 16:500–507CrossRefPubMedGoogle Scholar
  6. Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360.  https://doi.org/10.1074/jbc.M111663200 CrossRefPubMedGoogle Scholar
  7. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, Sukhatme VP (1999) Endostatin induces endothelial cell apoptosis. J Biol Chem 274:11721–11726CrossRefPubMedGoogle Scholar
  8. Dixelius J et al (2000) Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 95:3403–3411PubMedGoogle Scholar
  9. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.  https://doi.org/10.1056/nejm197111182852108 CrossRefPubMedGoogle Scholar
  10. Folkman J (2006a) Angiogenesis. Annu Rev Med 57:1–18.  https://doi.org/10.1146/annurev.med.57.121304.131306 CrossRefPubMedGoogle Scholar
  11. Folkman J (2006b) Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 312:594–607.  https://doi.org/10.1016/j.yexcr.2005.11.015 CrossRefPubMedGoogle Scholar
  12. Gress TM, Muller-Pillasch F, Lerch MM, Friess H, Buchler M, Adler G (1995) Expression and in situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 62:407–413CrossRefPubMedGoogle Scholar
  13. Hanai J et al (2002) Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem 277:16464–16469.  https://doi.org/10.1074/jbc.M112274200 CrossRefPubMedGoogle Scholar
  14. Ikeda M et al (2000) Inhibition of gelatinolytic activity in tumor tissues by synthetic matrix metalloproteinase inhibitor: application of film in situ zymography. Clin Cancer Res Off J Am Assoc Can Res 6:3290–3296Google Scholar
  15. Koivunen E et al (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–774.  https://doi.org/10.1038/11703 CrossRefPubMedGoogle Scholar
  16. Mohajeri A, Sanaei S, Kiafar F, Fattahi A, Khalili M, Zarghami N (2017) The challenges of recombinant endostatin in clinical application: focus on the different expression systems and molecular bioengineering. Adv Pharmaceut Bull 7:21–34.  https://doi.org/10.15171/apb.2017.004 CrossRefGoogle Scholar
  17. Muller D et al (1991) Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumours. Int J Cancer 48:550–556CrossRefPubMedGoogle Scholar
  18. O’Reilly MS et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285Google Scholar
  19. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672.  https://doi.org/10.1038/nrc884 CrossRefPubMedGoogle Scholar
  20. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT (1991) Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117:144–150CrossRefPubMedGoogle Scholar
  21. Qiu Z et al (2012) Definition of peptide inhibitors from a synthetic peptide library by targeting gelatinase B/matrix metalloproteinase-9 (MMP-9) and TNF-alpha converting enzyme (TACE/ADAM-17). J Enzyme Inhib Med Chem 27:533–540.  https://doi.org/10.3109/14756366.2011.599323 CrossRefPubMedGoogle Scholar
  22. Qiu Z, Hu J, Xu H, Wang W, Nie C, Wang X (2013) Generation of antitumor peptides by connection of matrix metalloproteinase-9 peptide inhibitor to an endostatin fragment. Anticancer Drugs 24:677–689.  https://doi.org/10.1097/CAD.0b013e328361b7ad CrossRefPubMedGoogle Scholar
  23. Reis RC, Schuppan D, Barreto AC, Bauer M, Bork JP, Hassler G, Coelho-Sampaio T (2005) Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans. Biochem Biophys Res Commun 333:976–983.  https://doi.org/10.1016/j.bbrc.2005.06.011 CrossRefPubMedGoogle Scholar
  24. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516.  https://doi.org/10.1146/annurev.cellbio.17.1.463 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Vandooren J et al (2015) Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem J 465:259–270.  https://doi.org/10.1042/bj20140418 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wang J et al (2005) Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. Chin J Lung Cancer 8:283–290.  https://doi.org/10.3779/j.issn.1009-3419.2005.04.07 CrossRefGoogle Scholar
  27. Wickstrom SA, Alitalo K, Keski-Oja J (2004) An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J Biol Chem 279:20178–20185.  https://doi.org/10.1074/jbc.M312921200 CrossRefPubMedGoogle Scholar
  28. Xu HM et al (2008) An RGD-modified endostatin-derived synthetic peptide shows antitumor activity in vivo. Bioconjugate Chem 19:1980–1986.  https://doi.org/10.1021/bc800132p CrossRefGoogle Scholar
  29. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V (2015) Tumour angiogenesis and angiogenic inhibitors: a review. JCDR 9:Xe01–Xe05.  https://doi.org/10.7860/jcdr/2015/12016.6135
  30. Yuan S et al (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J Off Publ Fed Am Soc Exp Biol 22:2809–2820.  https://doi.org/10.1096/fj.08-107417 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yifeng Xu
    • 1
  • Xu Qiang
    • 1
  • Lijun Xing
    • 1
  • Hong Wang
    • 1
  • Juan Zhang
    • 1
  • Fang Zhang
    • 2
  • Bilgen Caliskan
    • 1
  • Min Wang
    • 1
  • Zheng Qiu
    • 1
  1. 1.School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of PharmacyNanjing University of Chinese MedicineNanjingPeople’s Republic of China

Personalised recommendations