Amino Acids

, Volume 50, Issue 8, pp 1101–1110 | Cite as

Effect of dimerized melittin on gastric cancer cells and antibacterial activity

  • Elaheh Jamasbi
  • Sasidharan S. Lucky
  • Wenyi Li
  • Mohammed Akhter Hossain
  • Ponnampalam Gopalakrishnakone
  • Frances Separovic
Original Article


Melittin is the peptide toxin found in bee venom and is effective against cancer cells. To enhance its activity, a branched dimeric form of melittin was designed. The monomeric form of the peptide was more cytotoxic against gastric cancer cells at low concentrations (1–5 μM) than the dimer form, while the cytotoxic effect was comparable at higher concentrations (10 μM). Confocal microscopy showed that both the monomer and dimer forms of melittin with fluorescent label at the C terminus penetrated the cytoplasm and localized at the cell nucleus and disrupted the cell membrane. The results indicated that both peptides localized in the nucleus and no significant difference in penetration was observed between monomer and dimer of melittin. Although the C and N termini are important for melittin activity, using C terminus for dimerization of the peptide resulted in similar activity for the monomer and dimer against bacteria and gastric cancer cells.


Lytic peptide Cytotoxicity Confocal microscopy Cell membranes 



FS acknowledges the Australian Research Council for award of grant DP140102127.

Compliance with ethical standards

Conflict of interest

The authors do not have potential conflicts of interest.

Research involving Human Participants and/or Animals

This research did not involve Human Participants and/or Animals and does not require Informed Consent.

Supplementary material

Supplementary material 1 (WMV 17685 kb)


  1. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:21Google Scholar
  2. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214CrossRefPubMedGoogle Scholar
  3. Giordano A, Cito L (2012) Advances in gastric cancer prevention. World J Clin Oncol 3(9):128–136CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gribenko AV, Guzman-Casado M, Lopez MM, Makhatadze GI (2002) Conformational and thermodynamic properties of peptide binding to the human S100P protein. Protein Sci 11(6):1367–1375CrossRefPubMedPubMedCentralGoogle Scholar
  5. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014PubMedPubMedCentralGoogle Scholar
  6. Huang Y, Feng Q, Yan Q, Hao X, Chen Y (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15(1):73–81CrossRefPubMedGoogle Scholar
  7. Iwadate M, Asakura T, Williamson MP (1998) The structure of the melittin tetramer at different temperatures—an NOE-based calculation with chemical shift refinement. Eur J Biochem 257(2):479–487CrossRefPubMedGoogle Scholar
  8. Jamasbi E, Batinovic S, Sharples RA, Sani MA, Robins-Browne RM, Wade JD, Separovic F, Hossain MA (2014) Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 46(12):2759–2766CrossRefPubMedGoogle Scholar
  9. Jamasbi E, Ciccotosto GD, Tailhades J, Robins-Browne RM, Ugalde CL, Sharples RA, Patil N, Wade JD, Hossain MA, Separovic F (2015) Site of fluorescent label modifies interaction of melittin with live cells and model membranes. Biochimica et Biophysica Acta 1848(10 Pt A):2031–2039CrossRefPubMedGoogle Scholar
  10. Jamasbi E, Mularski A, Separovic F (2016) Model membrane and cell studies of antimicrobial activity of melittin analogues. Curr Top Med Chem 16(1):40–45CrossRefPubMedGoogle Scholar
  11. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 258(1):72–81CrossRefPubMedGoogle Scholar
  12. Kohno M, Horibe T, Ohara K, Ito S, Kawakami K (2014) The membrane-lytic peptides K8L9 and melittin enter cancer cells via receptor endocytosis following subcytotoxic exposure. Chem Biol 21(11):1522–1532CrossRefPubMedGoogle Scholar
  13. Kong G-M, Tao W-H, Diao Y-L, Fang P-H, Wang J-J, Bo P, Qian F (2016) Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J Gastroenterol 22(11):3186–3195CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li W, O’Brien-Simpson NM, Tailhades J, Pantarat N, Dawson RM, Otvos L Jr, Reynolds EC, Separovic F, Hossain MA, Wade JD (2015) Multimerization of a proline-rich antimicrobial peptide, CHEX-Arg20, alters its mechanism of interaction with the Escherichia coli membrane. Chem Biol 22(9):1250–1258CrossRefPubMedGoogle Scholar
  15. Li W, O’Brien-Simpson NM, Yao S, Tailhades J, Reynolds EC, Dawson RM, Otvos L Jr, Hossain MA, Separovic F, Wade JD (2017) C-Terminal modification and multimerization increase the efficacy of a proline-rich antimicrobial peptide. Chemistry (Weinheim an der Bergstrasse, Germany) 23(2):390–396Google Scholar
  16. Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (2008) Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology (Baltimore, Md) 47(6):1964–1973CrossRefGoogle Scholar
  17. Liu C-C, Hao D-J, Zhang Q, An J, Zhao J-J, Chen B, Zhang L-L, Yang H (2016) Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol 78(6):1113–1130CrossRefPubMedGoogle Scholar
  18. Miura Y (2012) NMR studies on the monomer-tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J 41(7):629–636CrossRefPubMedGoogle Scholar
  19. Orsolic N (2012) Bee venom in cancer therapy. Cancer Metastasis Rev 31(1–2):173–194CrossRefPubMedGoogle Scholar
  20. Othon CM, Kwon O-H, Lin MM, Zewail AH (2009) Solvation in protein (un)folding of melittin tetramer–monomer transition. Proc Natl Acad Sci 106(31):12593–12598CrossRefPubMedGoogle Scholar
  21. Qiu W, Zhang L, Kao YT, Lu W, Li T, Kim J, Sollenberger GM, Wang L, Zhong D (2005) Ultrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly. J Phys Chem B 109(35):16901–16910CrossRefPubMedGoogle Scholar
  22. Rady I, Siddiqui IA, Rady M, Mukhtar H (2017) Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 402:16–31CrossRefPubMedPubMedCentralGoogle Scholar
  23. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27(4–5):189–223CrossRefPubMedGoogle Scholar
  24. Ragin AD, Morgan RA, Chmielewski J (2002) Cellular Import mediated by nuclear localization signal peptide sequences. Chem Biol 9(8):943–948CrossRefPubMedGoogle Scholar
  25. Riss TL, Moravec RL, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2013) Cell viability assays. In: Sittampalam GS, Coussens NP, Brimacombe K, et al (eds) Assay guidance manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
  26. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30CrossRefPubMedGoogle Scholar
  27. Sun D, Sun M, Zhu W, Wang Z, Li Y, Ma J (2015) The anti-cancer potency and mechanism of a novel tumor-activated fused toxin, DLM. Toxins 7(2):423–438CrossRefPubMedPubMedCentralGoogle Scholar
  28. Terra RM, Guimaraes JA, Verli H (2007) Structural and functional behavior of biologically active monomeric melittin. J Mol Graph Model 25(6):767–772CrossRefPubMedGoogle Scholar
  29. Tosteson MT, Holmes SJ, Razin M, Tosteson DC (1985) Melittin lysis of red cells. J Membr Biol 87(1):35–44CrossRefPubMedGoogle Scholar
  30. van den Bogaart G, Guzmán JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283(49):33854–33857CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp JoVE 57:3357Google Scholar
  32. Zhang D, Wang J, Xu D (2016) Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release 229((Supplement C)):130–139CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry, Bio21 InstituteUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical DriveNational University of SingaporeSingaporeSingapore
  3. 3.The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia

Personalised recommendations