Advertisement

Amino Acids

, Volume 50, Issue 8, pp 1013–1023 | Cite as

Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case–control study

  • Bing Cao
  • Dongfang Wang
  • Elisa Brietzke
  • Roger S. McIntyre
  • Zihang Pan
  • Danielle Cha
  • Joshua D. Rosenblat
  • Hannah Zuckerman
  • Yaqiong Liu
  • Qing Xie
  • Jingyu Wang
Original Article

Abstract

Amino acids and derivatives participate in the biosynthesis and downstream effects of numerous neurotransmitters. Variations in specific amino acids have been implicated in the pathophysiology of schizophrenia. Herein, we sought to compare levels of amino acids and derivatives between subjects with schizophrenia and healthy controls (HC). Two hundred and eight subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia and 175 age- and sex-matched HC were enrolled. The levels of twenty-five amino acids and seven related derivatives were measured in plasma samples using hydrophilic interaction liquid chromatography (HILIC) liquid chromatography–tandem mass spectrometry (LC–MS). After controlling for age, sex and body mass index (BMI), four amino acids and derivatives (i.e., cysteine, GABA, glutamine and sarcosine) were observed to be higher in the schizophrenia group when compared with HC; seven amino acids and derivatives were lower in the schizophrenia group (i.e., arginine, l-ornithine, threonine, taurine, tryptophan, methylcysteine, and kynurenine). Statistically significant differences in plasma amino-acid profiles between subjects with first-episode vs. recurrent schizophrenia for aspartate and glutamine were also demonstrated using generalized linear models controlling for age, sex, and BMI. The differences in amino acids and derivatives among individuals with schizophrenia when compared to HC may represent underlying pathophysiology, including but not limited to dysfunctional proteinogenic processes, alterations in excitatory and inhibitory neurotransmission, changes in ammonia metabolism and the urea cycle. Taken together, amino-acid profiling may provide a novel stratification approach among individuals with schizophrenia.

Keywords

Amino acid Schizophrenia Targeting profiles Liquid chromatography–mass spectrometry Metabolomics 

Notes

Acknowledgements

This work was supported by Peking University Health Science Center Medical Cross Disciplinary Fund (BMU20140435). We thank Dr. Chuanbo Zhang and other medical staff from Weifang Mental Health Center for their assistance with subject recruitment, follow up and blood sample collection. Beijing Omics Bio-tech Co., Ltd for their kind help in data collection for this study.

Authors’ contribution

JYW, BC, and DFW conceived and designed the study; BC, DFW, JZ, and NHH collected the data and performed the statistical analysis; BC, ZHP, EB, RSM, JYW, DFW, DC, and JDR contributed to the discussion; and JYW, ZHP, RSM, EB, MS, RBM, JDR, HZ, YQL, and QX revised the paper. All authors have read and approved the final version of this article.

Funding

This work was supported by the Medicine Interdisciplinary Seed Fund (BMU20140435) by Health Science Center, Peking University.

Compliance with ethical standards

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

This study was reviewed and approved by the Ethics Review Committee of Public Health at Peking University Health Science Center (IRB00001052-14071).

Supplementary material

726_2018_2579_MOESM1_ESM.docx (268 kb)
Supplementary material 1 (DOCX 267 kb)

References

  1. Abboud R, Noronha C, Diwadkar VA (2017) Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry 44:125–133.  https://doi.org/10.1016/j.eurpsy.2017.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anjum S, Bathla M, Panchal S, Singh GP, Singh M (2017) Metabolic syndrome in drug naive schizophrenic patients. Diabetes Metab Syndr.  https://doi.org/10.1016/j.dsx.2017.11.006 Google Scholar
  3. Annamalai A, Kosir U, Tek C (2017) Prevalence of obesity and diabetes in patients with schizophrenia. World J Diabetes 8(8):390–396.  https://doi.org/10.4239/wjd.v8.i8.390 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Audhya T, Adams JB, Johansen L (2012) Correlation of serotonin levels in CSF, platelets, plasma, and urine. Biochim Biophys Acta 1820(10):1496–1501.  https://doi.org/10.1016/j.bbagen.2012.05.012 CrossRefPubMedGoogle Scholar
  5. Azizan KA, Ressom HW, Mendoza ER, Baharum SN (2017) 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses. PeerJ 5:e3451.  https://doi.org/10.7717/peerj.3451 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beninger RJ, Beuk J, Banasikowski TJ, van Adel M, Boivin GA, Reynolds JN (2010) Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding. Behav Pharmacol 21(1):1–10.  https://doi.org/10.1097/FBP.0b013e3283347091 CrossRefPubMedGoogle Scholar
  7. Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78(1):69–86.  https://doi.org/10.1016/j.schres.2005.05.019 CrossRefPubMedGoogle Scholar
  8. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal Chem 83(17):6648–6657.  https://doi.org/10.1021/ac201195d CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonnot O, Klunemann HH, Sedel F, Tordjman S, Cohen D, Walterfang M (2014) Diagnostic and treatment implications of psychosis secondary to treatable metabolic disorders in adults: a systematic review. Orphanet J Rare Dis 9:65.  https://doi.org/10.1186/1750-1172-9-65 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cai HL, Zhu RH, Li HD, Zhang XH, Hu L, Yang W, Ye HS (2010) Elevated plasma gamma-aminobutyrate/glutamate ratio and responses to risperidone antipsychotic treatment in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 34(7):1273–1278.  https://doi.org/10.1016/j.pnpbp.2010.07.006 CrossRefGoogle Scholar
  11. Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science.  https://doi.org/10.1126/science.aaf9794 PubMedGoogle Scholar
  12. Cha DS, Kudlow PA, Baskaran A, Mansur RB, McIntyre RS (2014) Implications of epigenetic modulation for novel treatment approaches in patients with schizophrenia. Neuropharmacology 77:481–486.  https://doi.org/10.1016/j.neuropharm.2013.08.038 CrossRefPubMedGoogle Scholar
  13. Chen CM, Stanford AD, Mao X, Abi-Dargham A, Shungu DC, Lisanby SH, Schroeder CE, Kegeles LS (2014) GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin 4:531–539.  https://doi.org/10.1016/j.nicl.2014.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Choi YK, Tarazi FI (2010) Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr−/− mice: relevance to schizophrenia. BMB Rep 43(9):593–598.  https://doi.org/10.3858/BMBRep.2010.43.9.593 CrossRefPubMedGoogle Scholar
  15. Comasco E, Vumma R, Toffoletto S, Johansson J, Flyckt L, Lewander T, Oreland L, Bjerkenstedt L, Andreou D, Soderman E, Terenius L, Agartz I, Jonsson EG, Venizelos N (2016) Genetic and functional study of L-type amino acid transporter 1 in schizophrenia. Neuropsychobiology 74(2):96–103.  https://doi.org/10.1159/000455234 CrossRefPubMedGoogle Scholar
  16. Dahlberg D, Ivanovic J, Hassel B (2014) High extracellular concentration of excitatory amino acids glutamate and aspartate in human brain abscess. Neurochem Int 69:41–47.  https://doi.org/10.1016/j.neuint.2014.03.001 CrossRefPubMedGoogle Scholar
  17. Danaceau JP, Chambers EE, Fountain KJ (2012) Hydrophilic interaction chromatography (HILIC) for LC-MS/MS analysis of monoamine neurotransmitters. Bioanalysis 4(7):783–794.  https://doi.org/10.4155/bio.12.46 CrossRefPubMedGoogle Scholar
  18. Eggers AE (2013) A serotonin hypothesis of schizophrenia. Med Hypotheses 80(6):791–794CrossRefPubMedGoogle Scholar
  19. Eyjolfsson EM, Nilsen LH, Kondziella D, Brenner E, Haberg A, Sonnewald U (2011) Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia. J Cereb Blood Flow Metab 31(3):976–985.  https://doi.org/10.1038/jcbfm.2010.193 CrossRefPubMedGoogle Scholar
  20. Galli F (2012) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 42(1):1–4.  https://doi.org/10.1007/s00726-010-0670-8 CrossRefPubMedGoogle Scholar
  21. Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2011) A comprehensive untargeted metabonomic analysis of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals important metabolic alterations. J Proteome Res 10(10):4825–4834CrossRefPubMedGoogle Scholar
  22. Gika HG, Theodoridis GA, Wilson ID (2008) Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J Sep Sci 31(9):1598–1608CrossRefPubMedGoogle Scholar
  23. He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D (2012) Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2:e149.  https://doi.org/10.1038/tp.2012.76 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hegyi H (2013) GABBR1 has a HERV-W LTR in its regulatory region–a possible implication for schizophrenia. Biol Direct 8:5.  https://doi.org/10.1186/1745-6150-8-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoche F, Klapperstuck T, Wohlrab J (2004) Effects of l-ornithine on metabolic processes of the urea cycle in human keratinocytes. Skin Pharmacol Physiol 17(6):283–288.  https://doi.org/10.1159/000081113 CrossRefPubMedGoogle Scholar
  26. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iwasaki Y, Sawada T, Hatayama K, Ohyagi A, Tsukuda Y, Namekawa K, Ito R, Saito K, Nakazawa H (2012) Separation technique for the determination of highly polar metabolites in biological samples. Metabolites 2(3):496–515.  https://doi.org/10.3390/metabo2030496 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jimenez E, Ormazabal A, Serrano M, Ortez-Gonzalez CI, Artuch R, Garcia-Cazorla A, Campistol J (2012) Amino acids in cerebrospinal fluid and plasma: its usefulness in the study of neuropaediatric diseases. Rev Neurol 54(7):394–398PubMedGoogle Scholar
  29. Jospeh MH, Baker HF, Crow TJ, Riley GJ, Risby D (1979) Brain tryptophan metabolism in schizophrenia: a post mortem study of metabolites of the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology 62(3):279–285CrossRefPubMedGoogle Scholar
  30. Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22.  https://doi.org/10.4137/IJTR.S16800 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Koido K, Innos J, Haring L, Zilmer M, Ottas A, Vasar E (2016) Taurine and epidermal growth factor belong to the signature of first-episode psychosis. Front Neurosci-Switz 10:331Google Scholar
  32. Koike S, Bundo M, Iwamoto K, Suga M, Kuwabara H, Ohashi Y, Shinoda K, Takano Y, Iwashiro N, Satomura Y, Nagai T, Natsubori T, Tada M, Yamasue H, Kasai K (2014) A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Transl Psychiatry 4:e379.  https://doi.org/10.1038/tp.2014.19 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Larovere LE, Fairbanks L, O’Neill JP, Arenas M, Marinaki A, Escuredo E, de Kremer RD (2012) Genetic defects of purine and pyrimidine metabolism in Argentina (Period 1996-2012). J Inherit Metab Dis 35:S55–S55Google Scholar
  34. Lee M, Jayathilake K, Dai J, Meltzer HY (2011) Decreased plasma tryptophan and tryptophan/large neutral amino acid ratio in patients with neuroleptic-resistant schizophrenia: relationship to plasma cortisol concentration. Psychiatry Res 185(3):328–333.  https://doi.org/10.1016/j.psychres.2010.07.013 CrossRefPubMedGoogle Scholar
  35. Lewis DA (2012) Cortical circuit dysfunction and cognitive deficits in schizophrenia–implications for preemptive interventions. Eur J Neurosci 35(12):1871–1878.  https://doi.org/10.1111/j.1460-9568.2012.08156.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li P, Yin YL, Li D, Kim SW, Wu GY (2007) Amino acids and immune function. Br J Nutr 98(2):237–252.  https://doi.org/10.1017/S000711450769936x CrossRefPubMedGoogle Scholar
  37. Liubetskii VA, Selivestrov AV (2005) Gene expression regulation for amino acid biosynthesis and aminoacyl-tRNA synthetases in actinobacteria. Mol Biol (Mosk) 39(6):1072–1075Google Scholar
  38. Macciardi F, Lucca A, Catalano M, Marino C, Zanardi R, Smeraldi E (1990) Amino acid patterns in schizophrenia: some new findings. Psychiatry Res 32(1):63–70CrossRefPubMedGoogle Scholar
  39. Maeshima H, Ohnuma T, Sakai Y, Shibata N, Baba H, Ihara H, Higashi M, Ohkubo T, Nozawa E, Abe S, Ichikawa A, Nakano Y, Utsumi Y, Suzuki T, Arai H (2007) Increased plasma glutamate by antipsychotic medication and its relationship to glutaminase 1 and 2 genotypes in schizophrenia—Juntendo University Schizophrenia Projects (JUSP). Prog Neuro-Psychopharmacol Biol Psychiatry 31(7):1410–1418.  https://doi.org/10.1016/j.pnpbp.2007.06.009 CrossRefGoogle Scholar
  40. Mikanmaa E, Grent-’t-Jong T, Lingling H, Recasens M, Thune H, Uhlhaas PJ (2017) Towards a neurodynamical understanding of the prodrome in schizophrenia. Neuroimage.  https://doi.org/10.1016/j.neuroimage.2017.11.026 PubMedGoogle Scholar
  41. Millier A, Schmidt U, Angermeyer MC, Chauhan D, Murthy V, Toumi M, Cadi-Soussi N (2014) Humanistic burden in schizophrenia: a literature review. J Psychiatr Res 54:85–93.  https://doi.org/10.1016/j.jpsychires.2014.03.021 CrossRefPubMedGoogle Scholar
  42. Morshed NM, Sobhan MA, Nahar JS, Keramat Ali SM, Shams M (2005) Excitatory aminoacid neurotransmitters in schizophrenia. Bangladesh Med Res Counc Bull 31(1):15–20PubMedGoogle Scholar
  43. Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharm 18:S129–S134.  https://doi.org/10.1016/j.euroneuro.2008.04.002 CrossRefGoogle Scholar
  44. Olde Damink SW, Jalan R, Redhead DN, Hayes PC, Deutz NE, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36(5):1163–1171.  https://doi.org/10.1053/jhep.2002.36497 CrossRefPubMedGoogle Scholar
  45. Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lonnqvist J, Sysi-Aho M, Hyotylainen T, Perala J, Suvisaari J (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3(3):19.  https://doi.org/10.1186/gm233 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ota M, Wakabayashi C, Sato N, Hori H, Hattori K, Teraishi T, Ozawa H, Okubo T, Kunugi H (2015) Effect of L-theanine on glutamatergic function in patients with schizophrenia. Acta Neuropsychiatr 27(5):291–296.  https://doi.org/10.1017/neu.2015.22 CrossRefPubMedGoogle Scholar
  47. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(7):684–697, 643.  https://doi.org/10.1038/sj.mp.4001511
  48. Rojo D, Barbas C, Ruperez FJ (2012) LC-MS metabolomics of polar compounds. Bioanalysis 4(10):1235–1243.  https://doi.org/10.4155/Bio.12.100 CrossRefPubMedGoogle Scholar
  49. Saleem S, Shaukat F, Gul A, Arooj M, Malik A (2017) Potential role of amino acids in pathogenesis of schizophrenia. Int J Health Sci (Qassim) 11(3):63–68Google Scholar
  50. Samuelsson M, Skogh E, Lundberg K, Vrethem M, Ollinger K (2013) Taurine and glutathione in plasma and cerebrospinal fluid in olanzapine treated patients with schizophrenia. Psychiatry Res 210(3):819–824.  https://doi.org/10.1016/j.psychres.2013.09.014 CrossRefPubMedGoogle Scholar
  51. Shigeri Y, Shimamoto K (2006) Pharmacology of inhibitory amino acid transporters (GABA transporters and glycine transporters). Nihon Yakurigaku Zasshi 127(4):279–287CrossRefPubMedGoogle Scholar
  52. Sinha AK, Giblen T, AbdElgawad H, De Rop M, Asard H, Blust R, De Boeck G (2013) Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat Toxicol 130–131:86–96.  https://doi.org/10.1016/j.aquatox.2013.01.003 CrossRefPubMedGoogle Scholar
  53. Takahashi K, Kohno H (2016) Different polar metabolites and protein profiles between high- and low-quality Japanese Ginjo Sake. PLoS ONE 11(3):e0150524CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tanaka S (2008) Dysfunctional GABAergic inhibition in the prefrontal cortex leading to “psychotic” hyperactivation. BMC Neurosci 9:41.  https://doi.org/10.1186/1471-2202-9-41 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tao F, Lu P, Xu C, Zheng M, Liu W, Shen M, Ruan S (2017) Metabolomics analysis for defining serum biochemical markers in colorectal cancer patients with Qi deficiency syndrome or Yin deficiency syndrome. Evid Based Complement Altern Med 2017:7382752.  https://doi.org/10.1155/2017/7382752 CrossRefGoogle Scholar
  56. Thakkar KN, Rosler L, Wijnen JP, Boer VO, Klomp DW, Cahn W, Kahn RS, Neggers SF (2017) 7T proton magnetic resonance spectroscopy of gamma-aminobutyric acid, glutamate, and glutamine reveals altered concentrations in patients with schizophrenia and healthy siblings. Biol Psychiatry 81(6):525–535.  https://doi.org/10.1016/j.biopsych.2016.04.007 CrossRefPubMedGoogle Scholar
  57. Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89(6):F497–F498.  https://doi.org/10.1136/adc.2003.048389 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299.  https://doi.org/10.1007/s11306-012-0482-9 CrossRefPubMedGoogle Scholar
  59. Yablonsky-Alter E, Agovic MS, Gashi E, Lidsky TI, Friedman E, Banerjee SP (2009) Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a microdialysis study. Brain Res Bull 79(3–4):215–218.  https://doi.org/10.1016/j.brainresbull.2008.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yang Q, Shi XZ, Wang YA, Wang WZ, He HB, Lu X, Xu GW (2010) Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system. J Sep Sci 33(10):1495–1503CrossRefPubMedGoogle Scholar
  61. Yao JK, Dougherty GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, Rozen S, Krishnan RR, McEvoy J, Kaddurah-Daouk R (2009) Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 15(9):938–953.  https://doi.org/10.1038/mp.2009.33 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yuan L, Liu A, Qiao L, Sheng B, Xu M, Li W, Chen D (2015) The relationship of CSF and plasma cytokine levels in HIV infected patients with neurocognitive impairment. Biomed Res Int 2015:506872.  https://doi.org/10.1155/2015/506872 PubMedPubMedCentralGoogle Scholar
  63. Zhong L, Cheng F, Lu X, Duan Y, Wang X (2016) Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta 158:351–360.  https://doi.org/10.1016/j.talanta.2016.04.049 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Bing Cao
    • 1
  • Dongfang Wang
    • 1
  • Elisa Brietzke
    • 2
    • 3
  • Roger S. McIntyre
    • 2
    • 4
  • Zihang Pan
    • 2
  • Danielle Cha
    • 2
    • 5
  • Joshua D. Rosenblat
    • 2
  • Hannah Zuckerman
    • 2
  • Yaqiong Liu
    • 1
    • 6
    • 7
  • Qing Xie
    • 1
    • 6
    • 7
  • Jingyu Wang
    • 1
    • 6
    • 7
  1. 1.Department of Laboratorial Science and Technology, School of Public HealthPeking UniversityBeijingPeople’s Republic of China
  2. 2.Mood Disorders Psychopharmacology Unit, Toronto Western HospitalUniversity Health NetworkTorontoCanada
  3. 3.Department of PsychiatryFederal University of São PauloSão PauloBrazil
  4. 4.Brain and Cognition Discovery FoundationTorontoCanada
  5. 5.Faculty of Medicine, School of MedicineUniversity of QueenslandBrisbaneAustralia
  6. 6.Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food SafetyBeijingPeople’s Republic of China
  7. 7.Peking University Medical and Health Analysis CenterPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations