Advertisement

Amino Acids

pp 1–16 | Cite as

Altered brain arginine metabolism in a mouse model of tauopathy

  • Pranav Vemula
  • Yu Jing
  • Hu Zhang
  • Jerry B. HuntJr.
  • Leslie A. Sandusky-Beltran
  • Daniel C. Lee
  • Ping LiuEmail author
Original Article

Abstract

Tauopathies consist of intracellular accumulation of hyperphosphorylated and aggregated microtubule protein tau, which remains a histopathological feature of Alzheimer’s disease (AD) and frontotemporal dementia. l-Arginine is a semi-essential amino acid with a number of bioactive molecules. Its downstream metabolites putrescine, spermidine, and spermine (polyamines) are critically involved in microtubule assembly and stabilization. Recent evidence implicates altered arginine metabolism in the pathogenesis of AD. Using high-performance liquid chromatographic and mass spectrometric assays, the present study systematically determined the tissue concentrations of l-arginine and its nine downstream metabolites in the frontal cortex, hippocampus, parahippocampal region, striatum, thalamus, and cerebellum in male PS19 mice-bearing human tau P301S mutation at 4, 8, and 12–14 months of age. As compared to their wild-type littermates, PS19 mice displayed early and/or prolonged increases in l-ornithine and altered polyamine levels with age. There were also genotype- and age-related changes in l-arginine, l-citrulline, glutamine, glutamate, and γ-aminobutyric acid in a region- and/or chemical-specific manner. The results demonstrate altered brain arginine metabolism in PS19 mice with the most striking changes in l-ornithine, polyamines, and glutamate, indicating a shift of l-arginine metabolism to favor the arginase–polyamine pathway. Given the role of polyamines in maintaining microtubule stability, the functional significance of these changes remains to be explored in future research.

Keywords

Tauopathy Arginine metabolism l-Ornithine Polyamines Glutamate Hippocampus 

Notes

Acknowledgements

This work was supported by the Beth Cobden-Cox Research Grant, and Brain Health Research Centre and Department of Anatomy, University of Otago, New Zealand. The authors would also like to thank the technical staff in the Department of Anatomy and School of Pharmacy, University of Otago, for their assistance. Pranav Vemula is a recipient of the University of Otago Postgraduate Scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution.

References

  1. Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276CrossRefGoogle Scholar
  2. Bae DH, Lane DJR, Jansson PJ, Richardson DR (2018) The old and new biochemistry of polyamines. Biochim Biophys Acta 1862:2053–2068CrossRefGoogle Scholar
  3. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653CrossRefGoogle Scholar
  4. Bensemain F, Hot D, Ferreira S, Dumont J, Bombois S, Maurage CA, Huot L, Hermant X, Levillain E, Hubans C, Hansmannel F, Chapuis J, Hauw JJ, Schraen S, Lemoine Y, Buee L, Berr C, Mann D, Pasquier F, Amouyel P, Lambert JC (2009) Evidence for induction of the ornithine transcarbamylase expression in Alzheimer’s disease. Mol Psychiatry 14:106–116CrossRefGoogle Scholar
  5. Bergin DH, Jing Y, Mockett BG, Zhang H, Abraham WC, Liu P (2018) Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Transl Psychiatry 8:108CrossRefGoogle Scholar
  6. Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol 437:17–41CrossRefGoogle Scholar
  7. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM (2007) Consortium for frontotemporal lobar degeneration. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22CrossRefGoogle Scholar
  8. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775CrossRefGoogle Scholar
  9. Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546CrossRefGoogle Scholar
  10. Cicolini J, Jing Y, Waldvogel HJ, Faull RLM, Liu P (2016) Urea cycle enzymes and peptidylarginine deiminase in Alzheimer’s superior frontal gyrus. Alzheimers Dement 12:P460CrossRefGoogle Scholar
  11. Crescenzi R, Debrosse C, Nanga RPR, Reddy S, Haris M, Hariharan H, Iba M, Lee VM, Detre JA, Borthakur A (2014) In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage 101:185–192CrossRefGoogle Scholar
  12. Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095CrossRefGoogle Scholar
  13. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279CrossRefGoogle Scholar
  14. Fisman M, Gordon B, Feleki V, Helmes E, Appell J, Rabheru K (1985) Hyperammonemia in Alzheimer’s disease. Am J Psychiatry 142:71–73CrossRefGoogle Scholar
  15. Gupta N, Jing Y, Collie ND, Zhang H, Liu P (2012) Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neuroscience 226:178–196CrossRefGoogle Scholar
  16. Hamon L, Savarin P, Curmi PA, Pastre D (2011) Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines. Biophys J 101:205–216CrossRefGoogle Scholar
  17. Herbron ML, Javidnia M, Moussa CE (2018) Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci 391:90–99CrossRefGoogle Scholar
  18. Hortnagl H, Berger ML, Sperk G, Pifl C (1991) Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45:261–272CrossRefGoogle Scholar
  19. Hunt JB Jr, Nash KR, Placides D, Moran P, Selenica ML, Abuqalbeen F, Ratnasamy K, Slouha N, Rodriguez-Ospina S, Savlia M, Ranaweera Y, Reid P, Dickey CA, Uricia R, Yang CG, Sandusky LA, Gordon MN, Morgan D, Lee DC (2015a) Sustained arginase 1 expression modulates pathological tau deposits in a mouse model of tauopathy. J Neurosci 35:14842–14860CrossRefGoogle Scholar
  20. Hunt JB Jr, Placides D, Ratnasamy K, Selenica ML, Nash K, Sandusky LA, Abuqalbeen F, Lee DC (2015b) Arginine metabolism and higher-order polyamines impact tau aggregation, microtubule assembly and autophagy in models of tauopathies. Alzheimers Dement 11:636–637CrossRefGoogle Scholar
  21. Inoue K, Tsutsui H, Akatsu H, Hashizume Y, Matsukawa N, Yamamoto T, ToyoO’ka T (2013) Metabolic profiling of Alzheimer’s disease brains. Sci Rep 3:2364CrossRefGoogle Scholar
  22. Irwin DJ, Cairns NJ, Grossman M, Mcmillan CT, Lee EB, Van Deerlin VM, Lee VM, Trojanowski JQ (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491CrossRefGoogle Scholar
  23. Lalonde R, Strazielle C (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2:300–309CrossRefGoogle Scholar
  24. Leitch B, Shevtsova O, Reusch K, Bergin DH, Liu P (2011) Spatial learning-induced increase in agmatine levels at hippocampal CA1 synapses. Synapse 65:146–153CrossRefGoogle Scholar
  25. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969CrossRefGoogle Scholar
  26. Liu P, Collie ND, Chary S, Jing Y, Zhang H (2008) Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus 18:1094–1098CrossRefGoogle Scholar
  27. Liu P, Jing Y, Collie ND, Chary S, Zhang H (2009) Memory-related changes in l-citrulline and agmatine in the rat brain. Hippocampus 19:597–602CrossRefGoogle Scholar
  28. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35:1992–2003CrossRefGoogle Scholar
  29. Liu P, Jing Y, Collie ND, Dean B, Bilkey DK, Zhang H (2016) Altered brain arginine metabolism in schizophrenia. Transl Psychiatry 6:e871CrossRefGoogle Scholar
  30. López-González I, Aso E, Carmona M, Armand-Ugon M, Blanco R, Naudi A, Cabre R, Portero-Otin M, Pamplona R, Ferrer I (2015) Neuroinflammatory gene regulation, mitochondrial function, oxidative stress, and brain lipid modifications with disease progression in tau P301S transgenic mice as a model of frontotemporal lobar degeneration-tau. J Neuropathol Exp Neurol 74:975–999CrossRefGoogle Scholar
  31. Malaterre J, Strambi C, Aouane A, Strambi A, Rougon G, Cayre M (2004) A novel role for polyamines in adult neurogenesis in rodent brain. Eur J Neurosci 20:317–330CrossRefGoogle Scholar
  32. Morris SM Jr (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105CrossRefGoogle Scholar
  33. Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508s–512sCrossRefGoogle Scholar
  34. Oredsson SM (2003) Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans 31:366–370CrossRefGoogle Scholar
  35. Petrosini L (2007) “Do what I do” and “do how I do”: different components of imitative learning are mediated by different neural structures. Neuroscientist 13:335–348CrossRefGoogle Scholar
  36. Phadwal K, Kurian D, Salamat MKF, MacRae VE, Diack AB, Manson JC (2018) Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep 8:10004CrossRefGoogle Scholar
  37. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893CrossRefGoogle Scholar
  38. Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends. Pharmacol Sci 21:187–193Google Scholar
  39. Rock D, Macdonald R (1995) Polyamine regulation of N-methyl-d-aspartate receptor channels. Annu Rev of Pharmacol Toxicol 35:463–482CrossRefGoogle Scholar
  40. Rushaidhi M, Jing Y, Zhang H, Liu P (2013) Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology 65:200–205CrossRefGoogle Scholar
  41. Sankaranarayanan S, Barten DM, Vana L, Devidze N, Yang L, Cadelina G, Hoque N, DeCarr L, Keenan S, Lin A, Cao Y, Snyder B, Zhang B, Nitla M, Hirschfeld G, Barrezueta N, Polson C, Wes P, Rangan VS, Cacace A, Albright CF, Meredith J Jr, Trojanowski JQ, Lee VM, Brunden KR, Ahlijanian M (2015) Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE 10(5):e0125614CrossRefGoogle Scholar
  42. Savarin P, Barbet A, Delga S, Joshi V, Hamon L, Lefevre J, Nakib S, De Bandt JP, Moinard C, Curmi PA, Pastre D (2010) A central role for polyamines in microtubule assembly in cells. Biochem J 430:151–159CrossRefGoogle Scholar
  43. Seiler N (2002) Ammonia and Alzheimer’s disease. Neurochem Int 41:189–207CrossRefGoogle Scholar
  44. Seiller N (2004) Catabolism of polyamines. Amino Acids 26:217–233Google Scholar
  45. Seo S, Liu P, Leitch B (2011) Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 192:28–36CrossRefGoogle Scholar
  46. Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST (2013) Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78:109–123CrossRefGoogle Scholar
  47. Wallace HM (2000) The physiological role of the polyamines. Eur J Clin Invest 30:72–78CrossRefGoogle Scholar
  48. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14CrossRefGoogle Scholar
  49. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365–391CrossRefGoogle Scholar
  50. Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297CrossRefGoogle Scholar
  51. Williams K, Romano C, Dichter MA, Molinoff PB (1991) Modulation of the NMDA receptor by polyamines. Life Sci 48:469–498CrossRefGoogle Scholar
  52. Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17CrossRefGoogle Scholar
  53. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351CrossRefGoogle Scholar
  54. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX, Ballatore C, Smith AB 3rd, Lee VM, Brunden KR (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32:3601–3611CrossRefGoogle Scholar
  55. Zolman JF (1993) Biostatistics: experimental design and statistical inference. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Pranav Vemula
    • 1
    • 3
  • Yu Jing
    • 1
    • 3
  • Hu Zhang
    • 2
    • 3
  • Jerry B. HuntJr.
    • 4
  • Leslie A. Sandusky-Beltran
    • 4
  • Daniel C. Lee
    • 4
  • Ping Liu
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Anatomy, School of Biomedical Sciences, Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
  2. 2.School of Pharmacy, Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
  3. 3.Brain Research New ZealandDunedinNew Zealand
  4. 4.Byrd Alzheimer’s Institute, College of Pharmacy and Pharmaceutical SciencesUniversity of South FloridaFloridaUSA

Personalised recommendations