Advertisement

Amino Acids

, Volume 49, Issue 9, pp 1521–1533 | Cite as

An overview on d-amino acids

  • Giuseppe Genchi
Review Article

Abstract

More than half a century ago researchers thought that d-amino acids had a minor function compared to l-enantiomers in biological processes. Many evidences have shown that d-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, d-serine (d-Ser) acts as a co-agonist of the N-methyl-d-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. d-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, d-aspartate (d-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. d-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain d-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of d-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of d-amino acids: amino acid racemase in the synthesis and d-amino acid oxidase in the degradation.

Keywords

d-amino acid Amino acid racemase d-amino acid oxidase d-Asp d-Ser 

Notes

Acknowledgements

The author gratefully acknowledges the financial support provided by Ministero dell’Istruzione, dell’Università e della Ricerca, Italia (MIUR). The author also thanks Dr. Adelaide Romito for English revision.

Compliance with ethical standards

Conflict of interest

The author reports that there are no conflicts of interest.

References

  1. Albert C, Pohn G, Lóki K, Salamon S, Albert B, Sára P, Mándoki Z, Jánosné Csapó, Csapó J (2007) Effect of microorganism on free amino acid and free d-amino acid contents of various dairy products. Poljoprivreda 13:192–193Google Scholar
  2. Bada JL (1984) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115CrossRefPubMedGoogle Scholar
  3. Bada JL, Cronin JR, Ho MS, Kvenvolden KA, Lawless JG (1983) On the reported optical activity of amino acids in the Murchison meteorite. Nature 310:494–497CrossRefGoogle Scholar
  4. Bauer D, Hamacher K, Bröer S, Pauleit D, Palm C, Zilles K, Coenen H, Langen KJ (2005) Preferred stereoselective brain uptake of d-serine-a modulator of glutamatergic neurotransmission. Nucl Med Biol 32:793–797CrossRefPubMedGoogle Scholar
  5. Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–441CrossRefPubMedGoogle Scholar
  6. Brückner H, Westhauser T (1994) Chromatographic determination of d-amino acids as native constituents of vegetables and fruits. Chromatographia 39:419–426CrossRefGoogle Scholar
  7. Brückner H, Jack P, Langer M, Godel H (1992) Liquid chromatographic determination of d-amino acids in cheese and cow milk. Implication of starter cultures. Amino acid racemases, and rumen microorganisms on formation and nutritional considerations. Amino Acids 2:271–284PubMedGoogle Scholar
  8. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980PubMedGoogle Scholar
  9. Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–831CrossRefPubMedGoogle Scholar
  10. Chang HM, Tsai CF, Li CF (1999) Changes of amino acid composition and lysinoalanine formation in alkali-pickled duck eggs. J Agric Food Chem 47:1495–1500CrossRefPubMedGoogle Scholar
  11. Chattopadhyay A, Kelkar DA (2005) Ion channel and d-amino acids. J Biosci 30:147–149CrossRefPubMedGoogle Scholar
  12. Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners—a review. J Food Sci Technol 51:611–621CrossRefPubMedGoogle Scholar
  13. Chiavaro E, Caligani A, Palla G (1998) Chiral indicators of aging in balsamic vinegars of Modena. Ital J Food Sci 10:327–329Google Scholar
  14. Choi SY, Esaki N, Yoshimura T, Soda K (1992) Reaction mechanism of glutamate racemase a pyridoxal phosphate-independent amino acid racemase. J Biochem 112:139–142CrossRefPubMedGoogle Scholar
  15. Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330:604–605CrossRefGoogle Scholar
  16. Contreras PC (1990) d-Serine antagonized phencyclidine- and MK-801-induced stereotyped behavior and ataxia. Neuropharmacology 29:291–293CrossRefPubMedGoogle Scholar
  17. Cook SP, Galve-Roperh I, Martínez del Pozo A, Rodríguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792CrossRefPubMedGoogle Scholar
  18. Corrigan JJ (1969) d-Amino acids in animals. Science 164:142–149CrossRefPubMedGoogle Scholar
  19. Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology 174:32–38CrossRefPubMedGoogle Scholar
  20. Csapò J, Henics Z (1991) Quantitative determination of bacterial protein from the diaminopimelic acid and d-alanine content of rumen liquor and intestines. Acta Agron Hung 1–2:159–173Google Scholar
  21. Csapò J, Schmidt J, Csapò-Kiss Z, Hollo G, Hollo I, Wagner L, Cenkvari E, Varga-Visi E, Pohn G, Andrassy-Baka G (2001) A new method for the quantitative determination of protein of bacterial origin on the basis of d-aspartic acid and d-glutamic acid content. Acta Aliment 30:37–52CrossRefGoogle Scholar
  22. Csapò J, Varga-Visi E, Lòki K, Albert C (2006) The influence of manufacture on the free d-amino acid content of Cheddar cheese. Amino Acids 32:39–43CrossRefPubMedGoogle Scholar
  23. Csapò J, Cs Albert, Zs Csapò-Kiss (2009) The d-amino acid content of foodstuffs (a review). Acta Univ Sapientiae Aliment 2:5–30Google Scholar
  24. D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31:1107–1108CrossRefPubMedGoogle Scholar
  25. D’Aniello A, Cosmo AD, Cristo CD, Annunziato L, Petrucelli L, Fisher G (1996) Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59:97–104CrossRefPubMedGoogle Scholar
  26. D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A (2005) Occurrence of d-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril 84:1444–1449CrossRefPubMedGoogle Scholar
  27. D’Aniello A (2007) D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234CrossRefPubMedGoogle Scholar
  28. Danysz W, Parsons AC (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664PubMedGoogle Scholar
  29. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci USA 99:14542–14547PubMedCentralCrossRefPubMedGoogle Scholar
  30. Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Mol Brain Res 133:208–214CrossRefPubMedGoogle Scholar
  31. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32CrossRefPubMedGoogle Scholar
  32. Ehmsen JT, Ma TM, Sason H, Rosenberg D, Ogo T, Furuya S, Snyder SH, Wolosker H (2013) d-Serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33:12464–12469PubMedCentralCrossRefPubMedGoogle Scholar
  33. Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D’Aniello A, Di Lauro R (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57CrossRefPubMedGoogle Scholar
  34. Erspamer V, Melchiorri P, Falconier-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites (amphibian skin peptides/mouse vas deferens assay/receptor binding assay). Proc Natl Acad Sci USA 86:5188–5192PubMedCentralCrossRefPubMedGoogle Scholar
  35. Erspamer V, Erspamer GF, Severini C, Potenza RL, Barra D, Mignogna G, Bianchi A (1993) Pharmacological studies of ‘sapo’ from the frog Phyllomedusa bicolor skin: a drug used by the Peruvian Matses Indians in shamanic hunting practices. Toxicon 31:1099–1111CrossRefPubMedGoogle Scholar
  36. Estevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) d-Serine and serine-racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Nat Acad Sci USA 100:6789–6794CrossRefGoogle Scholar
  37. Felbeck H (1985) Occurrence and metabolism of d-aspartate in the gutless bivalve Solemya reidi. J Exp Zool 234:145–149CrossRefGoogle Scholar
  38. Ferraris DV, Tsukamoto T (2011) Recent advances in the discovery of d-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia. Curr Pharm Des 17:103–111CrossRefPubMedGoogle Scholar
  39. Fischer HE (1891) Über die Konfiguration des Traubenzuckers und seiner Isomeren, I & II. Ber Dtsch Chem Ges 24(1836–1845):2683–2687CrossRefGoogle Scholar
  40. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular d-serine levels through an alpha, beta-elimination activity. J Biol Chem 280:1754–1763CrossRefPubMedGoogle Scholar
  41. Friedman M (2010) Origin, microbiology, nutrition, and pharmacology of d-amino acids. Chem Biodivers 7:1491–1530CrossRefPubMedGoogle Scholar
  42. Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42:1553–1582CrossRefPubMedGoogle Scholar
  43. Friedman M, Gumbmann MR, Masters PM (1984) Protein-alkali reactions: chemistry, toxicology and nutritional consequences. Adv Exp Med Biol 177:367–412CrossRefPubMedGoogle Scholar
  44. Fuchs SA, Berger R, Klomp LW, de Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85:168–180CrossRefPubMedGoogle Scholar
  45. Fujii N, Harada K, Momose Y, Ishii N, Akaboshi M (1999) d-Amino acid formation induced by a chiral field within a human lens protein during aging. Biochem Biophys Res Commun 263:322–326CrossRefPubMedGoogle Scholar
  46. Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28:1566–1570CrossRefPubMedGoogle Scholar
  47. Gandolfi I, Palla G, Marchelli R, Dossena A, Puelli S, Salvadori C (1994) d-Alanine in fruit juices: a molecular marker of bacterial activity, heat treatment and shelf-life. J Food Sci 59:152–154CrossRefGoogle Scholar
  48. Giraldez L, Girardi E (2000) Effects of an adenosine analogue administration on the striatal NMDA receptors in an experimental model of epilepsy. Neurochem Int 36:243–247CrossRefPubMedGoogle Scholar
  49. Gobbetti M, Simonetti MS, Rossim J, Cossignani L, Corsetti A, Damiani P (1994) Free d- and l-amino acid evolution during sourdough fermentation and baking. J Food Sci 59:881–884CrossRefGoogle Scholar
  50. Gu JQ, Alexander DC, Rock J, Brian P, Chu M, Baltz RH (2010) Structural characterization of a lipopeptide antibiotic A54145E(Asn3Asp9) produced by a genetically engineered strain of Streptomyces fradiae. J Antibiot 64:111–116CrossRefPubMedGoogle Scholar
  51. Hamase K (2007) Sensitive two-dimensional determination of small amounts of d-amino acids in mammals and the study on their functions. Chem Pharmaceut Bull 55:503–510CrossRefGoogle Scholar
  52. Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Regional distribution and postnatal changes of d-amino acids in rat brain. Biochim Biophys Acta 1334:214–222CrossRefPubMedGoogle Scholar
  53. Hamase K, Morikawa A, Zaitsu K (2002) d-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 781:73–91CrossRefPubMedGoogle Scholar
  54. Hashimoto K (2006) The NMDA receptor hypofunction hypothesis for schizophrenia and glycine modulatory sites on the NMDA receptors as potential therapeutic drugs. Clin Psychopharmacol Neurosci 4:3–10Google Scholar
  55. Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353CrossRefPubMedGoogle Scholar
  56. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36CrossRefPubMedGoogle Scholar
  57. Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 15:33–36CrossRefGoogle Scholar
  58. Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663CrossRefPubMedGoogle Scholar
  59. Hayase F, Kato H, Fujimaki M (1975) Racemization of amino acid residues in protein of poly(l-amino) acids during roasting. J Agric Food Chem 23:491–494CrossRefPubMedGoogle Scholar
  60. Helfman PM, Bada JL (1976) Aspartic acid racemization in dentine as a measure of aging. Nature 262:279–281CrossRefPubMedGoogle Scholar
  61. Hin N, Duvall B, Berry JF, Ferrari DV, Rais R, Alt J, Rojas C, Slusher BS, Tsukamoto T (2016) d-Amino acid oxidase inhibitors based on the 5-hydroxy-1,2,4-triazin-6(1H)-one scaffold. Bioorg Med Chem Lett 26:2088–2091PubMedCentralCrossRefPubMedGoogle Scholar
  62. Hong SY, Oh JE, Lee KH (1999) Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58:1775–1780CrossRefPubMedGoogle Scholar
  63. Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59:853–859CrossRefPubMedGoogle Scholar
  64. Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26:2814–2819CrossRefPubMedGoogle Scholar
  65. Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H (2016) Serine racemase is involved in d-aspartate biosynthesis. J Biochem 160:345–353CrossRefPubMedGoogle Scholar
  66. Jack RW, Jung G (1998) Natural peptides with antimicrobial activity. Chimia 52:48–55Google Scholar
  67. Jimenez EC, Olivera BM, Gray WR, Cruz LJ (1996) Contryphan is a d-tryptophan-containing Conus peptide. J Biol Chem 271:28002–28005CrossRefPubMedGoogle Scholar
  68. Kalman D, Barriere SL (1990) Review of the pharmacology, pharmacokinetics, and clinical use of cephalosporins. Tex Heart Inst J 17:203–215PubMedCentralPubMedGoogle Scholar
  69. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281:14151–14162CrossRefPubMedGoogle Scholar
  70. Kehagias C, Csapó J, Konteles S, Kolokitha E, Koulouris S, Csapó-Kiss Z (2008) Support of growth and formation of D-amino acids by Bifidobacterium longum in cows’, ewes’, goats’ milk and modified whey powder products. Int Dairy J 18:396–402CrossRefGoogle Scholar
  71. Koehbach J, Gruber CW, Becker C, Kreil DP, Jilek A (2016) MALDI TOF/TOF-based approach for the identification of d-amino acids in biologically active peptides and proteins. J Proteome Res 15:1487–1496PubMedCentralCrossRefPubMedGoogle Scholar
  72. Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Wolosker H (2015) Nuclear compartmentalization of serine racemase regulates d-serine production: implications for N-methyl-d-aspartate (NMDA) receptor activation. J Biol Chem 290:31037–31050PubMedCentralCrossRefPubMedGoogle Scholar
  73. Krebs HA (1935) Metabolism of amino-acids. Deamination of amino-acids. Biochem J 29:1620–1644PubMedCentralCrossRefPubMedGoogle Scholar
  74. Kreil G (1997) d-Amino acids in animal peptides. Annu Rev Biochem 66:337–345CrossRefPubMedGoogle Scholar
  75. Krysta JH, D’Souza DC, Petrakis L, Belger A, Berman RM, Charney DS, Abi-Saab W, Madonick S (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 7:125–143CrossRefGoogle Scholar
  76. Labrie V, Wong AHC, Roder JC (2012) Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62:1484–1503CrossRefPubMedGoogle Scholar
  77. Lee J, Lee DG (2008) Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 40:370–376PubMedCentralCrossRefPubMedGoogle Scholar
  78. Linden G, Lorient D (1999) New ingredients in food processing. In: Linden G, Lorient D (eds) Biochemistry and agriculture. CRC Press, Boca Raton, Woodhead Publishing Limited, Cambridge EnglandGoogle Scholar
  79. Man EH, Bada JL (1987) Dietary d-amino acids. Annu Rev Nutr 7:209–225CrossRefPubMedGoogle Scholar
  80. Matsushima O, Katayama H, Yamada K, Kado Y (1984) Occurrence of free d-alanine and alanine racemase activity in bivalve mollusks with special reference to intracellular osmoregulation. Mar Biol Lett 5:217–225Google Scholar
  81. Miller RF (2004) d-Serine as a glial modulator of nerve cells. Glia 47:275–283CrossRefPubMedGoogle Scholar
  82. Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17:275–283CrossRefPubMedGoogle Scholar
  83. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferri CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931PubMedCentralCrossRefPubMedGoogle Scholar
  84. Oancea S, Formaggio F (2008) Biological role of d-α-amino acids and their occurrence in foodstuffs. Acta Univ Cibiniensis Ser E Food Technol 12:3–18Google Scholar
  85. Ohtani S, Yamamoto T, Matsushima Y, Kobayashi Y (1998) Changes in the amount of d-aspartic acid in the femur with age. Growth Dev Aging 62:141–148PubMedGoogle Scholar
  86. Ollivaux C, Soyez D, Toullec JY (2014) Biogenesis of D-amino acid containing peptides/proteins: where, when and how? J Pept Sci 20:595–612CrossRefPubMedGoogle Scholar
  87. Palazzo E, Novellis V, Marabese I, Cuomo D, Rossi F, Berrino L, Rossi F, Maione S (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75CrossRefPubMedGoogle Scholar
  88. Paquet A, Rayman K (1987) Some N-acyl-d-amino acid derivatives having antibotulinal properties. Can J Microbiol 33:577–582CrossRefPubMedGoogle Scholar
  89. Pearce KN, Karahalios D, Friedman M (1988) Ninhydrin assay for proteolysis in ripening cheese. J Food Sci 53:432–435CrossRefGoogle Scholar
  90. Pernot P, Mothet JP, Schuvailo O, Soldatkin A, Pollegioni L, Pilone M, Adeline MT, Cespuglio R, Marinesco S (2008) Characterization of a yeast d-amino acid oxidase microbiosensor for d-serine detection in the central nervous system. Anal Chem 80:1589–1597CrossRefPubMedGoogle Scholar
  91. Pilone MS, Pollegioni L (2002) d-Amino acid oxidase as an industrial biocatalyst. Biocatal Biotransform 20:145–159CrossRefGoogle Scholar
  92. Preston RL (1987) Occurrence of d-amino acids in higher organisms: a survey of the distribution of d-amino acids in marine invertebrates. Comp Biochem Physiol 87B:55–62Google Scholar
  93. Reaveley DA, Burge RE (1972) Walls and membranes in bacteria. Adv Microb Physiol 7:1–81CrossRefGoogle Scholar
  94. Reynolds PE (1998) Control of peptidoglycan synthesis in vancomycin-resistant enterococci: d,d-peptidases and d,d-carboxypeptidases. Cell Mol Life Sci 54:325–331CrossRefPubMedGoogle Scholar
  95. Robinson T (1976) d-Amino acids in higher plants. Life Sci 19:1097–1102CrossRefPubMedGoogle Scholar
  96. Rolinson GN, Geddes AM (2007) The 50th anniversary of the discovery of 6-aminopenicillanic acid (6-APA). Int J Antimicrob Agents 29:3–8CrossRefPubMedGoogle Scholar
  97. Rooke JA, Greife HA, Armstrong DG (1984) The effect of in sacco rumen incubation of a grass silage upon the total and d-amino acid composition of the residual silage dry matter. J Agric Sci 102:695–702CrossRefGoogle Scholar
  98. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CMC, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961PubMedCentralCrossRefPubMedGoogle Scholar
  99. Ryadnov MG, Degtyareva OV, Kashparov IA, Mitin YV (2002) A new synthetic all-d-peptide with high bacterial and low mammalian cytotoxicity. Peptides 23:1869–1871CrossRefPubMedGoogle Scholar
  100. Sacchi S, Rosini E, Pollegioni L, Molla G (2013) d-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 19:2499–2511CrossRefPubMedGoogle Scholar
  101. Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1997) d-Aspartic acid localization during postnatal development of rat adrenal gland. Biochem Biophys Res Commun 235:433–436CrossRefPubMedGoogle Scholar
  102. Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Localization of d-aspartic acid in elongate spermatids in rat testis. Arch Biochem Biophys 351:96–105CrossRefPubMedGoogle Scholar
  103. Sarges R, Witkop B (1965) Gramicidin A.V. The structure of valine- and isoleucine-gramicidin A. J Am Chem Soc 87:2011–2020CrossRefPubMedGoogle Scholar
  104. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997a) d-Serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615PubMedGoogle Scholar
  105. Schell MJ, Cooper OB, Snyder SH (1997b) d-Aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci USA 94:2013–2018PubMedCentralCrossRefPubMedGoogle Scholar
  106. Shleper M, Kartvelishvily E, Wolosker H (2005) d-Serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 25:9413–9417CrossRefPubMedGoogle Scholar
  107. Simó C, Martín-Alvarez PJ, Barbas C, Cifuentes A (2004) Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Electrophoresis 25:2885–2891CrossRefPubMedGoogle Scholar
  108. Tipper DJ, Wright A (1979) The structure and biosynthesis of bacterial cell walls. In: Gunsalus LC, Sokatch JR, Ornstorn LN (eds) The bacteria: a treatise on structure and function. Academic Press, New York, pp 291–426Google Scholar
  109. Tishkov VI, Savin SS, Khoronenkova SV (2008) Creation of biocatalysts with prescribed properties. Russ Chem Bull 57:1014–1022CrossRefGoogle Scholar
  110. Tsai G, Yang P, Chung LC, Lange L, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089CrossRefPubMedGoogle Scholar
  111. Veiga P, Piquet S, Maisons A, Furlan S, Courtin P, Chapot-Chartier MP, Kulakauskas S (2006) Identification of an essential gene responsible for d-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Mol Microbiol 62:1713–1724CrossRefPubMedGoogle Scholar
  112. Wang C, Mcinnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107:535–550CrossRefPubMedGoogle Scholar
  113. Wang H, Wolosker H, Morris JF, Pevsner J, Snyder SH, Selkoe DJ (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109:1–4CrossRefPubMedGoogle Scholar
  114. Watanabe A, Kurokawa Y, Yoshimura T, Kurihara T, Soda K, Esaki N (1999) Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5′-phosphate. J Biol Chem 274:4189–4194CrossRefPubMedGoogle Scholar
  115. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris C, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725PubMedCentralCrossRefPubMedGoogle Scholar
  116. Wolosker H, D’Aniello A, Snyder SH (2000) d-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189CrossRefPubMedGoogle Scholar
  117. Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526CrossRefPubMedGoogle Scholar
  118. Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267:18361–18364PubMedGoogle Scholar
  119. Yoshimura T, Esak N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96:103–109CrossRefPubMedGoogle Scholar
  120. Zhao SL, Feng YZ, LeBlanc MH, Liu YM (2001) Determination of free aspartic acid enantiomers in rat brain by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 762:97–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Dipartimento di Farmacia e Scienze della Salute e della NutrizioneUniversità della Calabria (UNICAL)Arcavacata di Rende, CosenzaItaly

Personalised recommendations