Amino Acids

, Volume 49, Issue 8, pp 1293–1308 | Cite as

Biased selection of propagation-related TUPs from phage display peptide libraries

  • Hesam Motaleb Zade
  • Reihaneh Keshavarz
  • Hosna Sadat Zahed Shekarabi
  • Babak Bakhshinejad
Review Article


Phage display is rapidly advancing as a screening strategy in drug discovery and drug delivery. Phage-encoded combinatorial peptide libraries can be screened through the affinity selection procedure of biopanning to find pharmaceutically relevant cell-specific ligands. However, the unwanted enrichment of target-unrelated peptides (TUPs) with no true affinity for the target presents an important barrier to the successful screening of phage display libraries. Propagation-related TUPs (Pr-TUPs) are an emerging but less-studied category of phage display-derived false-positive hits that are displayed on the surface of clones with faster propagation rates. Despite long regarded as an unbiased selection system, accumulating evidence suggests that biopanning may create biological bias toward selection of phage clones with certain displayed peptides. This bias can be dependent on or independent of the displayed sequence and may act as a major driving force for the isolation of fast-growing clones. Sequence-dependent bias is reflected by censorship or over-representation of some amino acids in the displayed peptide and sequence-independent bias is derived from either point mutations or rare recombination events occurring in the phage genome. It is of utmost interest to clean biopanning data by identifying and removing Pr-TUPs. Experimental and bioinformatic approaches can be exploited for Pr-TUP discovery. With no doubt, obtaining deeper insight into how Pr-TUPs emerge during biopanning and how they could be detected provides a basis for using cell-targeting peptides isolated from phage display screening in the development of disease-specific diagnostic and therapeutic platforms.


Peptide phage display Combinatorial library Propagation-related TUP Biological bias Targeting 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.


  1. Abdeen SJ, Swett RJ, Feig AL (2010) Peptide inhibitors targeting Clostridium difficile toxins A and B. ACS Chem Biol 5:1097–1103CrossRefPubMedGoogle Scholar
  2. AC’t Hoen P et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631CrossRefPubMedGoogle Scholar
  3. Aghebati-Maleki L et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:66CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bakhshinejad B, Sadeghizadeh M (2016) A polystyrene binding target-unrelated peptide isolated in the screening of phage display library. Anal Biochem 512:120–128CrossRefPubMedGoogle Scholar
  5. Barbas C, Burton D, Scott J, Silverman G (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  6. Barkocy-Gallagher G, Bassford P (1992) Synthesis of precursor maltose-binding protein with proline in the + 1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. J Biol Chem 267:1231–1238PubMedGoogle Scholar
  7. Beck E et al (1978) Nucleotide sequence of bacteriophage fd DNA. Nucl Acids Res 5:4495–4504CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boni I (2006) Diverse molecular mechanisms of translation initiation in prokaryotes. Mol Biol 40:587–596CrossRefGoogle Scholar
  9. Brammer LA, Bolduc B, Kass JL, Felice KM, Noren CJ, Hall MF (2008) A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site. Anal Biochem 373:88–98CrossRefPubMedGoogle Scholar
  10. Che Y-J, Wu H-W, Hung L-Y, Liu C-A, Chang H-Y, Wang K, Lee G-B (2015) An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. Biomicrofluidics 9:054121CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cung K, Slater RL, Cui Y, Jones SE, Ahmad H, Naik RR, McAlpine MC (2012) Rapid, multiplexed microfluidic phage display. Lab Chip 12:562–565CrossRefPubMedGoogle Scholar
  12. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 87:6378–6382CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260:15925–15931PubMedGoogle Scholar
  14. De Smit MH (1998) Translational control by mRNA structure in eubacteria: molecular biology and physical chemistry. Cold Spring Harbor Monogr Arch 35:495–540Google Scholar
  15. Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL (2010a) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 132:1289–1295CrossRefPubMedPubMedCentralGoogle Scholar
  16. Derda R, Tang SK, Whitesides GM (2010b) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angew Chem Int Ed Engl 49:5301–5304CrossRefPubMedPubMedCentralGoogle Scholar
  17. Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803CrossRefPubMedGoogle Scholar
  18. Dev IK, Ray PH (1990) Signal peptidases and signal peptide hydrolases. J Bioenerg Biomembr 22:271–290CrossRefPubMedGoogle Scholar
  19. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–407CrossRefPubMedGoogle Scholar
  20. Dickinson H, Lukasser M, Mayer G, Hüttenhofer A (2015) Cell-SELEX: in vitro selection of synthetic small specific ligands. Methods Mol Biol 1296:213–224CrossRefPubMedGoogle Scholar
  21. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucl Acids Res 36:e105CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dotto GP, Zinder ND (1984a) Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis. Proc Natl Acad Sci USA 81:1336–1340CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dotto GP, Zinder ND (1984b) Reduction of the minimal sequence for initiation of DNA synthesis by qualitative or quantitative changes of an initiator protein. Nature 311:279–280CrossRefPubMedGoogle Scholar
  24. Fagerlund A, Myrset AH, Kulseth MA (2014) Construction of a filamentous phage display peptide library. Methods Mol Biol 1088:19–33CrossRefPubMedGoogle Scholar
  25. Fulford W, Model P (1988a) Bacteriophage f1 DNA replication genes: II. The roles of gene V protein and gene II protein in complementary strand synthesis. J Mol Biol 203:39–48CrossRefPubMedGoogle Scholar
  26. Fulford W, Model P (1988b) Regulation of bacteriophage f1 DNA replication: I. New functions for genes II and X. J Mol Biol 203:49–62CrossRefPubMedGoogle Scholar
  27. Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233CrossRefPubMedGoogle Scholar
  28. Gray BP, Brown KC (2013) Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114:1020–1081CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gray BP, Li S, Brown KC (2013) From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug Chem 24:85–96CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gu Y, Zhang J, Wang Y-B, Li S-W, Yang H-J, Luo W-X, Xia N-S (2004) Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology. World J Gastroenterol 10:1583–1588CrossRefPubMedPubMedCentralGoogle Scholar
  31. He B et al (2015) BDB: biopanning data bank. Nucl Acids Res 44(D1):D1127–D1132CrossRefPubMedPubMedCentralGoogle Scholar
  32. Heemskerk JA, Van Deutekom JCT, Van Kuik-Romeijn P, Platenburg GJ (2013) Molecules for targeting compounds to various selected organs or tissues. Google PatentsGoogle Scholar
  33. Heijne G (1994) Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct 23:167–192CrossRefGoogle Scholar
  34. Herman RE, Makienko EG, Badders DL, Fuller M (2010) Phage displayed cell binding peptides. Google PatentsGoogle Scholar
  35. Hertveldt K, Beliën T, Volckaert G (2009) General M13 phage display: M13 phage display in identification and characterization of protein–protein interactions. Methods Mol Biol 502:321–339CrossRefPubMedGoogle Scholar
  36. Hu D et al (2015) Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies. PLoS One 10:e0129125CrossRefPubMedPubMedCentralGoogle Scholar
  37. Iannolo G, Minenkova O, Gonfloni S, Castagnoli L, Cesareni G (1997) Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage. Biol Chem 378:517–522CrossRefPubMedGoogle Scholar
  38. Jijakli K et al (2016) The in vitro selection world. Methods 106:3–13CrossRefPubMedGoogle Scholar
  39. Jin W, Qin B, Chen Z, Liu H, Barve A, Cheng K (2016) Discovery of PSMA-specific peptide ligands for targeted drug delivery. Int J Pharm 513:138–147CrossRefPubMedGoogle Scholar
  40. Kay BK, Kasanov J, Yamabhai M (2001) Screening phage-displayed combinatorial peptide libraries. Methods 24:240–246CrossRefPubMedGoogle Scholar
  41. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072CrossRefPubMedGoogle Scholar
  42. Kokoska RJ, Steege DA (1998) Appropriate expression of filamentous phage f1 DNA replication genes II and X requires RNase E-dependent processing and separate mRNAs. J Bacteriol 180:3245–3249PubMedPubMedCentralGoogle Scholar
  43. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37CrossRefPubMedGoogle Scholar
  44. Krumpe LR et al (2006) T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics 6:4210–4222CrossRefPubMedGoogle Scholar
  45. Krumpe LR, Schumacher KM, McMahon JB, Makowski L, Mori T (2007) Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library. BMC Biotechnol 7:1CrossRefGoogle Scholar
  46. Kuhn A, Troschel D (1992) Distinct steps in the insertion pathway of bacteriophage coat proteins. New Compr Biochem 22:33–47CrossRefGoogle Scholar
  47. Liu GW et al (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817CrossRefPubMedPubMedCentralGoogle Scholar
  48. Makowski L (1993) Structural constraints on the display of foreign peptides on filamentous bacteriophages. Gene 128:5–11CrossRefPubMedGoogle Scholar
  49. Malik P et al (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260:9–21CrossRefPubMedGoogle Scholar
  50. Mandava S, Makowski L, Devarapalli S, Uzubell J, Rodi DJ (2004) RELIC—a bioinformatics server for combinatorial peptide analysis and identification of protein–ligand interaction sites. Proteomics 4:1439–1460CrossRefPubMedGoogle Scholar
  51. Mann AP et al (2016) A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. doi: 10.1038/ncomms11980 Google Scholar
  52. Marvin D (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158CrossRefPubMedGoogle Scholar
  53. Marvin D, Symmons M, Straus S (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114:80–122CrossRefPubMedGoogle Scholar
  54. Matochko WL, Derda R (2013) Error analysis of deep sequencing of phage libraries: peptides censored in sequencing. Comput Math Methods Med. doi: 10.1155/2013/491612 PubMedPubMedCentralGoogle Scholar
  55. Matochko WL, Chu K, Jin B, Lee SW, Whitesides GM, Derda R (2012a) Deep sequencing analysis of phage libraries using Illumina platform. Methods 58:47–55CrossRefPubMedGoogle Scholar
  56. Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SK, Derda R (2012b) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58:18–27CrossRefPubMedGoogle Scholar
  57. Matochko WL, Li SC, Tang SK, Derda R (2014) Prospective identification of parasitic sequences in phage display screens. Nucl Acids Res 42:1784–1798CrossRefPubMedGoogle Scholar
  58. McCarthy JE, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78–85CrossRefPubMedGoogle Scholar
  59. McGuire MJ, Li S, Brown KC (2009) Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands. Methods Mol Biol 504:291–321CrossRefPubMedPubMedCentralGoogle Scholar
  60. Menendez A, Scott JK (2005) The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal Biochem 336:145–157CrossRefPubMedGoogle Scholar
  61. Michel B, Zinder ND (1989a) In vitro binding of the bacteriophage f1 gene V protein to the gene II RNA-operator and its DNA analog. Nucl Acids Res 17:7333–7344CrossRefPubMedPubMedCentralGoogle Scholar
  62. Michel B, Zinder ND (1989b) Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci USA 86:4002–4006CrossRefPubMedPubMedCentralGoogle Scholar
  63. Model P, McGill C, Mazur B, Fulford WD (1982) The replication of bacteriophage f1: gene V protein regulates the synthesis of gene II protein. Cell 29:329–335CrossRefPubMedGoogle Scholar
  64. Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341:675–678CrossRefPubMedGoogle Scholar
  65. Nemudraya A, Richter V, Kuligina E (2016) Phage peptide libraries as a source of targeted ligands. Acta Nat 8(1):48–57Google Scholar
  66. Nguyen KT et al (2014) Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries. Anal Biochem 462:35–43CrossRefPubMedGoogle Scholar
  67. Nilsson I, von Heijne G (1992) A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in a sec-independent protein. FEBS Lett 299:243–246CrossRefPubMedGoogle Scholar
  68. Noren KA, Noren CJ (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23:169–178CrossRefPubMedGoogle Scholar
  69. Peters EA, Schatz PJ, Johnson SS, Dower WJ (1994) Membrane insertion defects caused by positive charges in the early mature region of protein pIII of filamentous phage fd can be corrected by prlA suppressors. J Bacteriol 176:4296–4305CrossRefPubMedPubMedCentralGoogle Scholar
  70. Petrenko V (2008) Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opin Drug Del 5:825–836CrossRefGoogle Scholar
  71. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42CrossRefPubMedGoogle Scholar
  72. Rakonjac J, Bennett N, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76PubMedGoogle Scholar
  73. Ravn U et al (2010) By-passing in vitro screening—next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucl Acids Res 38:e193CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rebollo IR, Sabisz M, Baeriswyl V, Heinis C (2014) Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucl Acids Res 42:e169CrossRefGoogle Scholar
  75. Rodi DJ, Makowski L (1999) Phage-display technology—finding a needle in a vast molecular haystack. Curr Opin Biotechnol 10:87–93CrossRefPubMedGoogle Scholar
  76. Rodi DJ, Soares AS, Makowski L (2002) Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries. J Mol Biol 322:1039–1052CrossRefPubMedGoogle Scholar
  77. Rosch JC, Hollmann EK, Lippmann ES (2016) In vitro selection technologies to enhance biomaterial functionality. Exp Biol Med 241:962–971CrossRefGoogle Scholar
  78. Ru B, ‘t Hoen PA, Nie F, Lin H, Guo F-B, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph. D.-7 phage display peptide library. J Bioinform Comput Biol 12:1450005CrossRefPubMedGoogle Scholar
  79. Russel M (1995) Moving through the membrane with filamentous phages. Trends Microbiol 3:223–228CrossRefPubMedGoogle Scholar
  80. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390CrossRefPubMedGoogle Scholar
  81. Shen LM, Lee JI, Cheng S, Jutte H, Kuhn A, Dalbey RE (1991) Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase. Biochemistry 30:11775–11781CrossRefPubMedGoogle Scholar
  82. Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63CrossRefPubMedGoogle Scholar
  84. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  85. Smith GP (1988) Filamentous phage assembly: morphogenetically defective mutants that do not kill the host. Virology 167:156–165CrossRefPubMedGoogle Scholar
  86. Steitz JA, Jakes K (1975) How ribosomes select initiator regions in mRNA: base pair formation between the 3′terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci USA 72:4734–4738CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thomas WD, Golomb M, Smith GP (2010) Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures. Anal Biochem 407:237–240CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tikunova N, Morozova V (2009) Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection. Acta Nat 1(3):8–20Google Scholar
  89. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107:3645–3650CrossRefPubMedPubMedCentralGoogle Scholar
  90. Umlauf BJ, McGuire MJ, Brown KC (2014) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. Biotechniques 58:81Google Scholar
  91. van Wezenbeek PM, Hulsebos TJ, Schoenmakers JG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11:129–148CrossRefPubMedGoogle Scholar
  92. Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws instead of a needle from a haystack. Molecules 16:790–817CrossRefPubMedGoogle Scholar
  93. Williams RM, Sooter LJ (2015) In vitro selection of cancer cell-specific molecular recognition elements from amino acid libraries. J Immunol Res. doi: 10.1155/2015/186586 Google Scholar
  94. Wilson B, Kautzer C, Antelman D (1994) Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis. Biotechniques 17:944–953PubMedGoogle Scholar
  95. Yamane K, Mizushima S (1988) Introduction of basic amino acid residues after the signal peptide inhibits protein translocation across the cytoplasmic membrane of Escherichia coli. Relation to the orientation of membrane proteins. J Biol Chem 263:19690–19696PubMedGoogle Scholar
  96. Yeh C-Y, Hsiao J-K, Wang Y-P, Lan C-H, Wu H-C (2016) Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 99:1–15CrossRefPubMedGoogle Scholar
  97. Yen TB, Webster RE (1982) Translational control of bacteriophage f1 gene II and gene X proteins by gene V protein. Cell 29:337–345CrossRefPubMedGoogle Scholar
  98. Zacher AN, Stock CA, Golden JW, Smith GP (1980) A new filamentous phage cloning vector: fd-tet. Gene 9:127–140CrossRefPubMedGoogle Scholar
  99. Zaman G, Schoenmakers J, Konings R (1990) Translational regulation of M13 gene II protein by its cognate single-stranded DNA binding protein. Eur J Biochem 189:119–124CrossRefPubMedGoogle Scholar
  100. Zaman G, Kaan A, Schoenmakers J, Konings R (1992) Gene V protein-mediated translational regulation of the synthesis of gene II protein of the filamentous bacteriophage M13: a dispensable function of the filamentous-phage genome. J Bacteriol 174:595–600CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zanconato S, Minervini G, Poli I, Lucrezia D (2011) Selection dynamic of Escherichia coli host in M13 combinatorial peptide phage display libraries. Biosci Biotechnol Biochem 75:812–815CrossRefPubMedGoogle Scholar
  102. Zinder N, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49:101PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Hesam Motaleb Zade
    • 1
  • Reihaneh Keshavarz
    • 2
  • Hosna Sadat Zahed Shekarabi
    • 1
  • Babak Bakhshinejad
    • 2
  1. 1.Department of Genetics, Faculty of Basic Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations