Amino Acids

, Volume 49, Issue 8, pp 1401–1414 | Cite as

Dityrosine administration induces dysfunction of insulin secretion accompanied by diminished thyroid hormones T3 function in pancreas of mice

  • Yin-Yi Ding
  • Zhu-Qing Li
  • Xiang-Rong Cheng
  • Yu-Mei Ran
  • Sha-Ji Wu
  • Yonghui Shi
  • Guowei Le
Original Article

Abstract

Oxidized tyrosine products are commonly found in food with high protein content and have been demonstrated to cause damage of liver and kidney in our previous studies. Dityrosine (Dityr) is a typical oxidized tyrosine product. Due to its structural homology with thyroid hormones T3, we assumed that one of the endocrine systems most likely considered in connection with its disruption by Dityr may be the T3 action. T3 plays important roles in insulin synthesis, and thyroid hormone resistance (RTH) is associated with the impairment of glucose metabolism. Therefore, this study determined whether Dityr exposure impaired T3 function in pancreas leading to glucose metabolism disruption. After 10-week gavage with Dityr, mice exhibited impaired glucose tolerance and disturbed energy metabolism. The elevated free THs content in plasma, the up-regulation of THs synthesis-specific genes expressions in thyroid glands, and the increased thyroid follicles histology shapes and areas indicated that Dityr enhanced the THs synthesis in thyroid glands. In addition, Dityr-induced RTH, which reflected as elevated plasma free THs in the presence of unsuppressed thyroid stimulating hormone. The mRNA downregulation of membrane transporter of T3 (MCT8) and co-activator factors (RXRα, Src-1), together with the decreased protein level of thyroid hormone receptor β1 (TRβ1) in pancreas illustrated that the activation ability of T3 to downstream gene involved in insulin synthesis was suppressed by Dityr. In MIN-6 cell experiment, T3 improved glucose-stimulated insulin secretion by upregulating mRNA levels of insulin synthesis-related genes (Ins2, MafA, Pdx1) and T3 action-related genes, as well as increasing protein level of TRβ1. These data suggest that Dityr suppress T3-regulated insulin synthesis stimulated by glucose via an indirect way of decreasing sensibility to T3 in pancreas. All these findings indicate that Dityr can disrupt THs function in pancreas leading to glucose metabolism disorder.

Keywords

Dityrosine C57BL/6J mice MIN-6 cells Glucose metabolism Energy metabolism Thyroid hormone resistance 

References

  1. Aguayo-Mazzucato C, Koh A, El Khattabi I, Li WC, Toschi E, Jermendy A, Juhl K, Mao K, Weir GC, Sharma A, Bonner-Weir S (2011) Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells. Diabetologia 54(3):583–593. doi:10.1007/s00125-010-2026-z CrossRefPubMedGoogle Scholar
  2. Beck-Peccoz P, Mannavola D, Persani L (2005) Syndromes of thyroid hormone resistance. Ann Endocrinol 66(3):264–269CrossRefGoogle Scholar
  3. Bernal J (2011) Thyroid hormone resistance syndromes. Endocrinologia y nutricion organo de la Sociedad Espanola de Endocrinologia y Nutricion 58(4):185–196. doi:10.1016/j.endonu.2011.02.001 CrossRefPubMedGoogle Scholar
  4. Bhattacharjee S, Pennathur S, Byun J, Crowley J, Mueller D, Gischler J, Hotchkiss RS, Heinecke JW (2001) NADPH oxidase of neutrophils elevates o,o′-dityrosine cross-links in proteins and urine during inflammation. Arch Biochem Biophys 395(1):69–77. doi:10.1006/abbi.2001.2557 CrossRefPubMedGoogle Scholar
  5. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545(1):39–50. doi:10.1016/j.ejphar.2006.06.026 CrossRefPubMedGoogle Scholar
  6. Cao M, Long Y, Tong Y, Wan J, Tong N (2012) Activation of PPARdelta up-regulates the expression of insulin gene transcription factor MafA and ameliorates glucose-induced insulin secretion impaired by palmitate. Mol Cell Biochem 366(1–2):183–189. doi:10.1007/s11010-012-1296-9 CrossRefPubMedGoogle Scholar
  7. Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ (2012) L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 238(1):29–37. doi:10.1016/j.expneurol.2011.09.029 CrossRefPubMedGoogle Scholar
  8. Choi HM, Kim HR, Kim EK, Byun YS, Won YS, Yoon WK, Kim HC, Kang JG, Nam KH (2015) An age-dependent alteration of the respiratory exchange ratio in the db/db mouse. Lab Anim Res 31(1):1–6. doi:10.5625/lar.2015.31.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dalsgaard TK, Nielsen JH, Brown BE, Stadler N, Davies MJ (2011) Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. J Agric Food Chem 59(14):7939–7947. doi:10.1021/jf200277r CrossRefPubMedGoogle Scholar
  10. Danforth E Jr, Burger A (1984) The role of thyroid hormones in the control of energy expenditure. Clin Endocrinol Metab 13(3):581–595CrossRefPubMedGoogle Scholar
  11. Davies MJ (2005) The oxidative environment and protein damage. Biochem Biophys Acta 1703(2):93–109. doi:10.1016/j.bbapap.2004.08.007 PubMedGoogle Scholar
  12. Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E, Docherty K (2005) Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 389(Pt 3):813–820. doi:10.1042/BJ20041891 CrossRefPubMedPubMedCentralGoogle Scholar
  13. El Refaey M, Watkins CP, Kennedy EJ, Chang A, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Johnson M, Hunter M, Hamrick MW, Isales CM (2015) Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Mol Cell Endocrinol 410:87–96. doi:10.1016/j.mce.2015.01.034 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Estevez M, Luna C (2016) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1165182 Google Scholar
  15. Gurer-Orhan H, Ercal N, Mare S, Pennathur S, Orhan H, Heinecke JW (2006) Misincorporation of free m-tyrosine cytotoxic mechanism for oxidized a into cellular proteins: a potential amino acids. Biochem J 395:277–284. doi:10.1042/Bj20051964 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim B (2008) Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18(2):141–144. doi:10.1089/thy.2007.0266 CrossRefPubMedGoogle Scholar
  17. Laflamme L, Hamann G, Messier N, Maltais S, Langlois MF (2002) RXR acts as a coregulator in the regulation of genes of the hypothalamo–pituitary axis by thyroid hormone receptors. J Mol Endocrinol. doi:10.1677/Jme.0.0290061 PubMedGoogle Scholar
  18. Li YY, Yu LF, Zhang LN, Qiu BY, Su MB, Wu F, Chen DK, Pang T, Gu M, Zhang W, Ma WP, Jiang HW, Li JY, Nan FJ, Li J (2013) Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice. Toxicol Appl Pharmacol 273(2):325–334. doi:10.1016/j.taap.2013.09.006 CrossRefPubMedGoogle Scholar
  19. Li ZL, Mo L, Le G, Shi Y (2014) Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food Chem Toxicol 64:86–93. doi:10.1016/j.fct.2013.10.039 CrossRefPubMedGoogle Scholar
  20. Li ZL, Shi Y, Le G, Ding Y, Zhao Q (2016) 24-week exposure to oxidized tyrosine induces hepatic fibrosis involving activation of the MAPK/TGF-β1 signaling pathway in Sprague–Dawley rats model. Oxid Med Cell Longev 1:1–12Google Scholar
  21. Lipinski B (2001) Dityrosine crosslinking of fibrin(ogen) may offer additional protection of tumor cells against immune killing. Oncology 60(4):373. doi:10.1159/000058535 CrossRefPubMedGoogle Scholar
  22. Malik MA, Basahel SN, Obaid AY, Khan Z (2010) Oxidation of tyrosine by permanganate in presence of cetyltrimethylammonium bromide. Colloids Surf B 76(1):346–353. doi:10.1016/j.colsurfb.2009.11.019 CrossRefGoogle Scholar
  23. Mangelsdorf DJ, Evans RM (1995) The Rxr heterodimers and orphan receptors. Cell 83(6):841–850. doi:10.1016/0092-8674(95)90200-7 CrossRefPubMedGoogle Scholar
  24. Matarese LE (1997) Indirect calorimetry: technical aspects. J Am Diet Assoc 97(10 Suppl 2):S154–S160CrossRefPubMedGoogle Scholar
  25. McKinney JD, Waller CL (1994) Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect 102(3):290–297CrossRefPubMedPubMedCentralGoogle Scholar
  26. Medina MC, Molina J, Gadea Y, Fachado A, Murillo M, Simovic G, Pileggi A, Hernandez A, Edlund H, Bianco AC (2011) The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human beta-cells and its targeted inactivation impairs insulin secretion. Endocrinology 152(10):3717–3727. doi:10.1210/en.2011-1210 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mitchell CS, Savage DB, Dufour S, Schoenmakers N, Murgatroyd P, Befroy D, Halsall D, Northcott S, Raymond-Barker P, Curran S, Henning E, Keogh J, Owen P, Lazarus J, Rothman DL, Farooqi IS, Shulman GI, Chatterjee K, Petersen KF (2010) Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J Clin Investig 120(4):1345–1354. doi:10.1172/JCI38793 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87(11):5185–5190. doi:10.1210/jc.2002-020209 CrossRefPubMedGoogle Scholar
  29. Oetting A, Yen PM (2007) New insights into thyroid hormone action. Best Pract Res Clin Endocrinol 21(2):193–208. doi:10.1016/j.beem.2007.04.004 CrossRefGoogle Scholar
  30. Onate SA, Tsai SY, Tsai MJ, Omalley BW (1995) Sequence and characterization of a coactivator for the steroid-hormone receptor superfamily. Science 270(5240):1354–1357CrossRefPubMedGoogle Scholar
  31. Pijl H, de Meijer PH, Langius J, Coenegracht CI, van den Berk AH, Chandie Shaw PK, Boom H, Schoemaker RC, Cohen AF, Burggraaf J, Meinders AE (2001) Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability. J Clin Endocrinol Metab 86(12):5848–5853. doi:10.1210/jcem.86.12.8112 CrossRefPubMedGoogle Scholar
  32. Ran Y, Yan B, Li Z, Ding Y, Shi Y, Le G (2016) Dityrosine administration induces novel object recognition deficits in young adulthood mice. Physiol Behav 164(Pt A):292–299. doi:10.1016/j.physbeh.2016.06.019 CrossRefPubMedGoogle Scholar
  33. Rickenbacher U, McKinney JD, Oatley SJ, Blake CC (1986) Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem 29(5):641–648CrossRefPubMedGoogle Scholar
  34. Rochon C, Tauveron I, Dejax C, Benoit P, Capitan P, Fabricio A, Berry C, Champredon C, Thieblot P, Grizard J (2003) Response of glucose disposal to hyperinsulinaemia in human hypothyroidism and hyperthyroidism. Clin Sci (Lond) 104(1):7–15. doi:10.1042/cs1040007 CrossRefGoogle Scholar
  35. Roy G, Nethaji M, Mugesh G (2004) Biomimetic studies on anti-thyroid drugs and thyroid hormone synthesis. J Am Chem Soc 126(9):2712–2713. doi:10.1021/ja039860g CrossRefPubMedGoogle Scholar
  36. Stagi S, Manoni C, Cirello V, Covelli D, Giglio S, Chiarelli F, Seminara S, de Martino M (2014) Diabetes mellitus in a girl with thyroid hormone resistance syndrome: a little recognized interaction between the two diseases. Hormones 13(4):561–567. doi:10.14310/horm.2002.1502 PubMedGoogle Scholar
  37. Stanicka S, Vondra K, Pelikanova T, Vlcek P, Hill M, Zamrazil V (2005) Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy. Clin Chem Lab Med 43(7):715–720. doi:10.1515/CCLM.2005.121 CrossRefPubMedGoogle Scholar
  38. Taguchi Y, Tasaki Y, Terakado K, Kobayashi K, Machida T, Kobayashi T (2010) Impaired insulin secretion from the pancreatic islets of hypothyroidal growth-retarded mice. J Endocrinol 206(2):195–204. doi:10.1677/JOE-09-0465 CrossRefPubMedGoogle Scholar
  39. Terrien X, Fini JB, Demeneix BA, Schramm KW, Prunet P (2011) Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids. Aquat Toxicol 105(1–2):13–20. doi:10.1016/j.aquatox.2011.04.007 CrossRefPubMedGoogle Scholar
  40. Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4. doi:10.1186/1472-6823-10-4 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Utrera M, Estevez M (2013) Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. J Agric Food Chem 61(33):7987–7993. doi:10.1021/jf402220q CrossRefPubMedGoogle Scholar
  42. Yen PM (2003) Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14(7):327–333CrossRefPubMedGoogle Scholar
  43. Zhu XG, Hanover JA, Hager GL, Cheng SY (1998) Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem 273(42):27058–27063CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Food Nutrition and Functional Factors Research Center, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.The State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations