Advertisement

Amino Acids

, Volume 49, Issue 8, pp 1381–1388 | Cite as

Novel DNA/RNA-targeting amino acid beacon for the versatile incorporation at any position within the peptide backbone

  • Tamara Šmidlehner
  • Ivo PiantanidaEmail author
Original Article

Abstract

One-pot tandem synthesis was for the first time applied to attach fluorophore to the amino acid side chain, yielding amino acid ready for peptide coupling at the N-terminus, and also upon activation at the C-terminus. Two new compounds differing only in fluorophore-linker length showed exceptional fluorimetric and CD recognition between DS-RNA and DS-DNA, thus being promising beacons for versatile peptide incorporation.

Keywords

Fluorescent amino acid One-pot synthesis DNA/RNA recognition Fluorescence∙CD 

Notes

Acknowledgements

This work has been supported by the Croatian Science Foundation project 1477. Special thanks go to Prof. Todor Deligeorgiev and Dr. Atanas Kurutos for fruitful discussions and advice.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

726_2017_2438_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2399 kb)

References

  1. Armitage BA (2005) DNA binders and related subjects: cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. Top Curr Chem 253:55–76. doi: 10.1007/B100442 Google Scholar
  2. Chaires JB, Dattagupta N, Crothers D (1982) Studies on interaction of anthracycline antibiotics and deoxyribonucleic-acid: equilibrium binding-studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 21:3933–3940. doi: 10.1021/bi00260a005 CrossRefPubMedGoogle Scholar
  3. Crnolatac I, Tumir LM, Lesev NY, Vasilev AA, Deligeorgiev TG, Miskovic K, Glavas-Obrovac L, Vugrek O, Piantanida I (2013) Probing the structural properties of DNA/RNA grooves with sterically restricted phosphonium dyes: screening of dye cytotoxicity and uptake. ChemMedChem 7:1093–1103. doi: 10.1002/cmdc.201300085 CrossRefGoogle Scholar
  4. Crnolatac I, Rogan I, Majic B, Tomic S, Deligeorgiev T, Horvat G, Makuc D, Plavec J, Pescitelli GPI, Piantanida I (2016) Small molecule probes finely differentiate between various ds- and ss-DNA and RNA by fluorescence, CD and NMR response. Anal Chim Acta 940:128–135. doi: 10.1016/j.aca.2016.08.021 CrossRefPubMedGoogle Scholar
  5. Deligeorgiev TG, Zaneva DA, Kim SH, Sabnis RW (1998) Preparation of monomethine cyanine dyes for nucleic acid detection. Dye Pigment 37:205–211. doi: 10.1016/S0143-7208(97)80088-5 CrossRefGoogle Scholar
  6. Deligeorgiev T, Gadjev N, Vasilev A, Drexhage KH, Yarmoluk S (2006) Synthesis of novel monomeric cyanine dyes containing mercapto and thioacetyl substituents for nucleic acid detection. Dye Pigment 7:185–191. doi: 10.1016/j.dyepig.2005.05.010 CrossRefGoogle Scholar
  7. Duksi M, Baretic D, Caplar V, Piantanida I (2010) Novel bis-phenanthridine derivatives with easily tunable linkers, study of their interactions with DNA and screening of antiproliferative activity. Eur J Med Chem 45:2671–2676. doi: 10.1016/j.ejmech.2010.02.017 CrossRefPubMedGoogle Scholar
  8. Duksi M, Baretic D, Piantanida I (2012) Synthesis of the peptide-based phenanthridine-nucleobase conjugates and study of their interactions with ds-DNA. Acta Chim Slov 59:464–472PubMedGoogle Scholar
  9. Eriksson M, Nordén B (2001) Linear and circular dichroism of drug-nucleic acid complexes. Methods Enzymol 340:68–98CrossRefPubMedGoogle Scholar
  10. Gore MG (2000) Spectrophotometry and spectrofluorimetry. A practical approach. Oxford University Press, OxfordGoogle Scholar
  11. Hamer FM (1964) The cyanine dyes and related compounds. Interscience Publisher, New YorkGoogle Scholar
  12. Hong SH, Kwon YC, Jewett M (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:1–7. doi: 10.3389/fchem.2014.00034 CrossRefGoogle Scholar
  13. Houben-Weyl H (2004) Synthesis of peptides and peptidomimetics. In: Murray G, Arthur F, Luis M, Claudio T (eds) Methods in organic chemistry. Thieme Verlag Stuttgart, StuttgartGoogle Scholar
  14. Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y (1996) Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucl Acids Res 24:4992–4997. doi: 10.1093/nar/24.24.4992 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Japan Kokai Tokkyo, Koho, (2004) 58 203 432Google Scholar
  16. Japan Kokai Tokkyo, Koho (2006) 58 205 144Google Scholar
  17. Kubin RF, Fletcher AN (1982) Fuorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462CrossRefGoogle Scholar
  18. Kummer S, Knoll A, Socher E et al (2011) Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew Chem Int Ed 50:1931–1934. doi: 10.1002/anie.201005902 CrossRefGoogle Scholar
  19. Malojčić G, Piantanida I, Marinić M, Žinić M, Marjanović M, Kralj M, Pavelić KSH (2005) A novel bis-phenanthridine triamine with pH controlled binding to nucleotides and nucleic acids. Org Biomol Chem 3:4373–4381. doi: 10.1039/B509094f CrossRefPubMedGoogle Scholar
  20. Matić J, Lidija T, Marijana RS, Piantanida I (2016) Advances in peptide-based DNA/RNA-intercalators. Curr Protein Pept Sci 17:127–134. doi: 10.2174/138920371702160209124439 CrossRefPubMedGoogle Scholar
  21. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489CrossRefPubMedGoogle Scholar
  22. Meguellati K, Koripelly G, Ladame S (2010) DNA-templated synthesis of trimethine cyanine dyes: a versatile fluorogenic reaction for sensing G-quadruplex formation. Angew Chem Int Ed 49:2738–2742. doi: 10.1002/anie.201000291 CrossRefGoogle Scholar
  23. Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13:515–537. doi: 10.1089/154545703322860825 CrossRefPubMedGoogle Scholar
  24. Miller JN (1981) Standards for fluorescence spectrometry. Chapman and Hall, LondonCrossRefGoogle Scholar
  25. Nygren J, Svanvik N, Kubista M (1998) The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46:39–51. doi: 10.1002/(Sici)1097-0282(199807)46:1<39:Aid-Bip4>3.0.Co;2-Z CrossRefPubMedGoogle Scholar
  26. Oh KJ, Cash KJ, Plaxco K (2009) Beyond molecular beacons: optical sensors based on the binding-induced folding of proteins and polypeptides. Chem-Eur J 15:2244–2251. doi: 10.1002/chem.200701748 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pascal R, Sola R (1998) Preservation of the Fmoc protective group under alkaline conditions by using CaC12. Applications in peptide synthesis. Tetrahedron Lett 39:5031–5034CrossRefGoogle Scholar
  28. Pazos E, Vazquez O, Mascarenas JL, Vazquez M (2009) Peptide-based fluorescent biosensors. Chem Soc Rev 38:3348–3359. doi: 10.1039/b908546g CrossRefPubMedGoogle Scholar
  29. Rodger A, Norden B (1997) Circular dichroism and linear dichroism. Oxford University Press, New YorkGoogle Scholar
  30. Rosch U, Yao S, Wortmann R, Würthner F (2006) Fluoresceut H-aggregates of merocyanine dyes. Angew Chem Int Ed 45:7026–7030. doi: 10.1002/anie.200602286 CrossRefGoogle Scholar
  31. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672CrossRefGoogle Scholar
  32. Silverman RB (2004) The organic chemistry of drug design and drug action. Elsevier Academic Press, New YorkGoogle Scholar
  33. Socher E, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O (2008) FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem 375:318–330. doi: 10.1016/j.ab.2008.01.009 CrossRefPubMedGoogle Scholar
  34. Trost BM, Rudd M (2003) Chemoselectivity of the ruthenium-catalyzed hydrative diyne cyclization: total synthesis of (+)-cylindricine C, D, and E. Org Lett 5:4599–4602. doi: 10.1021/ol035752n CrossRefPubMedGoogle Scholar
  35. Tumir LM, Crnolatac I, Deligeorgiev T, Vasilev A, Kaloyanova S, Branilovic MG, Tomic S, Piantanida I (2012) Kinetic differentiation between homo- and alternating AT DNA by sterically restricted phosphonium dyes. Chem A Eur J 18:3859–3864. doi: 10.1002/chem.201102968 CrossRefGoogle Scholar
  36. Vasilyeva E, Lam B, Fang ZC, Minden MD, Sargent EH, Kelley S (2011) Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew Chem Int Ed 50:4137–4141. doi: 10.1002/anie.201006793 CrossRefGoogle Scholar
  37. Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D (1993) The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry 32:4098–4104CrossRefPubMedGoogle Scholar
  38. Wu JC, Zou Y, Li CY, Sicking W, Piantanida I, Yi T, Schmuck C (2012) A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc 134:1958–1961. doi: 10.1021/Ja2103845 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations