Amino Acids

, Volume 49, Issue 8, pp 1365–1372 | Cite as

GPNA inhibits the sodium-independent transport system l for neutral amino acids

  • Martina Chiu
  • Cosimo Sabino
  • Giuseppe Taurino
  • Massimiliano G. Bianchi
  • Roberta Andreoli
  • Nicola Giuliani
  • Ovidio Bussolati
Original Article


l-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine transporter ASCT2, although it is known that it also inhibits other sodium-dependent amino acid transporters. In a panel of human cancer cell lines, which express the system l transporters LAT1 and LAT2, GPNA inhibits the sodium-independent influx of leucine and glutamine. The kinetics of the effect suggests that GPNA is a low affinity, competitive inhibitor of system l transporters. In Hs683 human oligodendroglioma cells, the incubation in the presence of GPNA, but not ASCT2 silencing, lowers the cell content of leucine. Under the same conditions the activity of mTORC1 is inhibited. Decreased cell content of branched chain amino acids and mTORC1 inhibition are observed in most of the other cell lines upon incubation with GPNA. It is concluded that GPNA hinders the uptake of essential amino acids through system l transporters and lowers their cell content.


GPNA Leucine System l LAT1 ASCT2 Glutamine 


Authors’ contribution

MC, CS, GT, and MGB performed the experiments. RA performed LC/MS–MS analysis. MC analyzed the data. MC and OB designed the study and wrote the manuscript. NG discussed the results and revised the text. All Authors have approved the final version.

Compliance with ethical standards


MC is supported by a research fellowship of the University of Parma.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any study with human participants or animals performed by any of the authors.


  1. Barollo S, Bertazza L, Watutantrige-Fernando S et al (2016) Overexpression of l-type amino acid transporter 1 (LAT1) and 2 (LAT2): novel markers of neuroendocrine tumors. PLoS One 11:e0156044CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bianchi MG, Franchi-Gazzola R, Reia L et al (2012) Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells. Neuroscience 227:260–270CrossRefPubMedGoogle Scholar
  3. Bolzoni M, Chiu M, Accardi F et al (2016) Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 128:667–679CrossRefPubMedGoogle Scholar
  4. Broer A, Rahimi F, Broer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291:13194–13205CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193CrossRefPubMedGoogle Scholar
  6. Chen R, Zou Y, Mao D et al (2014) The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 206:173–182CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chiu M, Tardito S, Barilli A et al (2012) Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 43:2561–2567CrossRefPubMedGoogle Scholar
  8. Chiu M, Tardito S, Pillozzi S et al (2014) Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br J Cancer 111:1159–1167CrossRefPubMedPubMedCentralGoogle Scholar
  9. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of l-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174CrossRefPubMedGoogle Scholar
  10. Esslinger CS, Cybulski KA, Rhoderick JF (2005) Nγ-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem 13:1111–1118CrossRefPubMedGoogle Scholar
  11. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266CrossRefPubMedGoogle Scholar
  12. Hassanein M, Hoeksema MD, Shiota M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570CrossRefPubMedGoogle Scholar
  13. Hassanein M, Qian J, Hoeksema MD et al (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 137:1587–1597CrossRefPubMedPubMedCentralGoogle Scholar
  14. Indo Y, Takeshita S, Ishii KA et al (2013) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28:2392–2399CrossRefPubMedGoogle Scholar
  15. Ishizuka Y, Kakiya N, Nawa H et al (2008) Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system l amino acid transporter. J Neurochem 106:934–942CrossRefPubMedGoogle Scholar
  16. Jewell JL, Kim YC, Russell RC et al (2015) Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–198CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kaira K, Oriuchi N, Imai H et al (2008) l-Type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci 99:2380–2386CrossRefPubMedGoogle Scholar
  18. Kanai Y, Segawa H, Miyamoto K et al (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632CrossRefPubMedGoogle Scholar
  19. Lieberman BP, Ploessl K, Wang L et al (2011) PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med 52:1947–1955CrossRefPubMedGoogle Scholar
  20. Milkereit R, Persaud A, Vanoaica L et al (2015) LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun 6:7250CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nicklin P, Bergman P, Zhang B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ren P, Yue M, Xiao D et al (2015) ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J Pathol 235:90–100CrossRefPubMedGoogle Scholar
  23. Takahashi K, Uchida N, Kitanaka C et al (2015) Inhibition of ASCT2 is essential in all-trans retinoic acid-induced reduction of adipogenesis in 3T3-L1 cells. FEBS Open Bio 5:571–578CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tang C, Tang G, Gao S et al (2016) Radiosynthesis and preliminary biological evaluation of N-(2-[18F]fluoropropionyl)-l-glutamine as a PET tracer for tumor imaging. Oncotarget 7:34100–34111PubMedPubMedCentralGoogle Scholar
  25. van Geldermalsen M, Wang Q, Nagarajah R et al (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35:3201–3208CrossRefPubMedGoogle Scholar
  26. Wang Q, Holst J (2015) l-Type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 5:1281–1294PubMedPubMedCentralGoogle Scholar
  27. Wang Q, Hardie RA, Hoy AJ et al (2015) Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 236:278–289CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
  2. 2.Laboratory of Industrial Toxicology, Department of Medicine and SurgeryUniversity of Parma43126 ParmaItaly
  3. 3.Laboratory of Hematology, Department of Medicine and Surgery, University of ParmaUniversity of Parma43126 ParmaItaly
  4. 4.Hematology and BMT CenterAzienda Ospedaliero-Universitaria di ParmaParmaItaly

Personalised recommendations