Amino Acids

, Volume 49, Issue 8, pp 1355–1364 | Cite as

Design, synthesis and biological evaluation of novel peptides as potential agents with anti-tumor and multidrug resistance-reversing activities

Original Article

Abstract

Tumor chemotherapy is an important mean in the clinical treatment of metastatic cancer,but low selectivity and drug resistance restrict its clinical application. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. We selected BP100 as a lead peptide, designed and synthesized a series of BP100 analogs through solid-phase synthesis. Amongst them, peptides with the Tyr10 residue substituted by leucine and histidine showed the highest anti-cancer activity. Further experiments revealed that BP100 and its analogs could disrupt the cell membrane and trigger the cytochrome C release into cytoplasm, which ultimately resulted in apoptosis. Meanwhile, BP100 and its analogs also exhibited effective anti-tumor activity against multidrug-resistant cells, showing multidrug resistance-reversing effects. In conclusion, these peptides might be promising candidates for cancer therapy.

Keywords

Anti-cancer Multidrug resistance-reversing effects Membrane-disruption Antimicrobial peptides 

Supplementary material

726_2017_2434_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1253 kb)

References

  1. Beaglehole R, Bonita R, Magnusson R (2011) Global cancer prevention: an important pathway to global health and development. Public Health 125(12):821–831CrossRefPubMedGoogle Scholar
  2. Chan K-F, Wong IL, Kan JW, Yan CS, Chow LM, Chan TH (2012) Amine linked flavonoid dimers as modulators for P-glycoprotein-based multidrug resistance: structure–activity relationship and mechanism of modulation. J Med Chem 55(5):1999–2014CrossRefPubMedGoogle Scholar
  3. Chen W, Yang B, Zhou H, Sun L, Dou J, Qian H, Huang W, Mei Y, Han J (2011) Structure–activity relationships of a snake cathelicidin-related peptide, BF-15. Peptides 32(12):2497–2503CrossRefPubMedGoogle Scholar
  4. de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta (BBA) Biomembr 1325(1):108–116CrossRefGoogle Scholar
  5. Deng X, Qiu Q, Yang B, Wang X, Huang W, Qian H (2015) Design, synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities. Eur J Med Chem 89:540–548CrossRefPubMedGoogle Scholar
  6. Dobrzyńska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z (2005) Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 276(1):113–119CrossRefPubMedGoogle Scholar
  7. Eckford PD, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109(7):2989–3011CrossRefPubMedGoogle Scholar
  8. Fojo T, Menefee M (2007) Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol 18(suppl 5):v3–v8CrossRefPubMedGoogle Scholar
  9. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18):2101–2102CrossRefPubMedGoogle Scholar
  10. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62(1):385–427CrossRefPubMedGoogle Scholar
  11. Gray MW (2012) Mitochondrial evolution. Cold Spring Harbor Perspect Biol 4(9):a011403CrossRefGoogle Scholar
  12. Grieco P, Luca V, Auriemma L, Carotenuto A, Saviello MR, Campiglia P, Barra D, Novellino E, Mangoni ML (2011) Alanine scanning analysis and structure–function relationships of the frog-skin antimicrobial peptide temporin-1Ta. J Pept Sci 17(5):358–365CrossRefPubMedGoogle Scholar
  13. Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206(2):143–149CrossRefPubMedGoogle Scholar
  14. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta (BBA) Biomembr 1778(2):357–375CrossRefGoogle Scholar
  15. Howl J (2005) Peptide synthesis and applications, vol 298. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  16. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57(5):545–553CrossRefPubMedGoogle Scholar
  17. Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G-q Lu, J-s Lin F (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289(5482):1159–1164CrossRefPubMedGoogle Scholar
  18. Li X, Michaeloudes C, Zhang Y, Lian Q, Mak JC, Bhavsar PK, Chung K (2015) Oxidative stress-induced mitochondria alteration in human airway smooth muscle cells and mesenchymal stem cells. Am J Respir Crit Care Med 191:A5544CrossRefGoogle Scholar
  19. Liu K, P-c Liu, Liu R, Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mai JC, Mi Z, Kim S-H, Ng B, Robbins PD (2001) A proapoptotic peptide for the treatment of solid tumors. Can Res 61(21):7709–7712Google Scholar
  21. Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC (2014) Peptide: lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochim Biophys Acta (BBA) Biomembr 1838(7):1985–1999CrossRefGoogle Scholar
  22. Monje M, Dietrich J (2012) Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res 227(2):376–379CrossRefPubMedGoogle Scholar
  23. Soler M, González-Bártulos M, Soriano-Castell D, Ribas X, Costas M, Tebar F, Massaguer A, Feliu L, Planas M (2014) Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org Biomol Chem 12(10):1652–1663CrossRefPubMedGoogle Scholar
  24. Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40(4):387–397CrossRefPubMedGoogle Scholar
  25. Sun X-M, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274(8):5053–5060CrossRefPubMedGoogle Scholar
  26. Wang C, Tian L-L, Li S, Li H-B, Zhou Y, Wang H, Yang Q-Z, Ma L-J, Shang D-J (2013) Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One 8(4):e60462CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55CrossRefPubMedGoogle Scholar
  28. Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Pept Sci 84(5):435–458CrossRefGoogle Scholar
  29. Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294(Pt 1):1CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhang B, Zhao T, Zhou J, Qiu Q, Dai Y, Pan M, Huang W, Qian H (2016) Design, synthesis and biological evaluation of novel triazole-core reversal agents against P-glycoprotein-mediated multidrug resistance. RSC Adv 6(31):25819–25828CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Center of Drug Discovery, State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseaseChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations