Advertisement

Amino Acids

, Volume 49, Issue 7, pp 1237–1245 | Cite as

An insecticidal toxin from Nephila clavata spider venom

  • Lin Jin
  • Mingqian Fang
  • Mengrou Chen
  • Chunling Zhou
  • Rose Ombati
  • Md Abdul Hakim
  • Guoxiang Mo
  • Ren Lai
  • Xiuwen Yan
  • Yumin Wang
  • Shilong Yang
Original Article

Abstract

Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on NaV and KV channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

Keywords

Toxin Spider Venom Nephila clavata Bioinsecticide 

Notes

Acknowledgements

We thank Dr. Zeng Lin for technical advice and assistance on MS/MS spectra analysis. This work was supported by funding from the Ministry of Science and Technology of China (2013CB911304), National Science Foundation of China (331372208 and U1302221), Chinese Academy of Sciences (XDA12040209, QYZDJ-SSW-SMC012), Science and technology office of Jiangsu Province (BE2016742) and Yunnan Province (2015HA023) to R.L., National Science Foundation of China (31640071) and Chinese Academy of Sciences (XDA12020334 and Youth Innovation Promotion Association) to S.Y., and National Science Foundation of China (31201717), Jiangsu Province (Q0201600440) to X.W.Y.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Barslund AF, Poulsen MH, Bach TB, Lucas S, Kristensen AS, Stromgaard K (2011) Solid-phase synthesis and biological evaluation of joro spider toxin-4 from Nephila clavata. J Nat Prod 74:483–486CrossRefPubMedGoogle Scholar
  2. Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890CrossRefPubMedGoogle Scholar
  3. Bende NS, Dziemborowicz S, Mobli M, Herzig V, Gilchrist J, Wagner J, Nicholson GM, King GF, Bosmans F (2014) A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat Commun 11(5):4350Google Scholar
  4. Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, Nicholson GM, King GF, Mobli M (2015) The insecticidal spider toxin sfi1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large beta-hairpin loop. The FEBS J 282:904–920CrossRefPubMedGoogle Scholar
  5. Borges CR, Sherma ND (2014) Techniques for the analysis of cysteine sulfhydryls and oxidative protein folding. Antioxid Redox Signal 21(3):511–531Google Scholar
  6. Clement H, Flores V, Diego-Garcia E, Corrales-Garcia L, Villegas E, Corzo GA (2015) Comparison between the recombinant expression and chemical synthesis of a short cysteine-rich insecticidal spider peptide. J Venom Anim Toxins Incl Trop Dis 21:19CrossRefPubMedPubMedCentralGoogle Scholar
  7. Demkovich M, Siegel JP, Higbee BS, Berenbaum MR (2015) Mechanism of resistance acquisition and potential associated fitness costs in Amyelois transitella (Lepidoptera: Pyralidae) exposed to pyrethroid insecticides. Environ Entomol 44(3):855–863CrossRefPubMedGoogle Scholar
  8. Figueiredo SG, Garcia ME, Valentim AC, Cordeiro MN, Diniz CR, Richardson M (1995) Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6–1) from the venom of the “armed” spider Phoneutria nigriventer (Keys). Toxicon 33:83–93CrossRefPubMedGoogle Scholar
  9. Gunning SJ, Maggio F, Windley MJ, Valenzuela SM, King GF, Nicholson GM (2008) The janus-faced atracotoxins are specific blockers of invertebrate k(ca) channels. FEBS J 275:4045–4059CrossRefPubMedGoogle Scholar
  10. Hakim MA, Jiang W, Luo L, Li B, Yang S, Song Y, Lai R (2015) Scorpion toxin, bmp01, induces pain by targeting trpv1 channel. Toxins 7:3671–3687CrossRefPubMedPubMedCentralGoogle Scholar
  11. Herzig V, Ikonomopoulou M, Smith JJ, Dziemborowicz S, Gilchrist J, Kuhn-Nentwig L, Rezende FO, Moreira LA, Nicholson GM, Bosmans F, King GF (2016) Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami. Sci Rep 7(6):29538CrossRefGoogle Scholar
  12. Hisada M, Fujita T, Naoki H, Itagaki Y, Irie H, Miyashita M, Nakajima T (1998) Structures of spider toxins: hydroxyindole-3-acetylpolyamines and a new generalized structure of type-e compounds obtained from the venom of the joro spider, Nephila clavata. Toxicon 36:1115–1125CrossRefPubMedGoogle Scholar
  13. Højland DH, Nauen R, Foster SP, Williamson MS, Kristensen M (2015) Incidence, spread and mechanisms of pyrethroid resistance in european populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). PLoS One 10(12):e0146045Google Scholar
  14. Jiang WB, Hakim M, Luo L, Li BW, Yang SL, Song YZ, Lai R, Lu QM (2015) Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus. Dongwuxue Yanjiu 36:174–177PubMedPubMedCentralGoogle Scholar
  15. Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H (2013) The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 6(6):343CrossRefPubMedPubMedCentralGoogle Scholar
  16. Joo HS, Park GC, Cho WR, Tak E, Paik SR, Chang CS (2002) Purification and characterization of a prothrombin-activating protease from Nephila clavata. Toxicon 40:289–296CrossRefPubMedGoogle Scholar
  17. King GF, Hardy MC (2013) Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 58:475–496CrossRefPubMedGoogle Scholar
  18. Liu J, Jiang J, Wu Z, Xie F (2012) Antimicrobial peptides from the skin of the Asian frog, Odorrana jingdongensis: de novo sequencing and analysis of tandem mass spectrometry data. J Proteom 75(18):5807–5821Google Scholar
  19. Liu Z, Deng M, Xiang J, Ma H, Hu W, Zhao Y, Li DW, Liang S (2012b) A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr Mol Med 12:1350–1360CrossRefPubMedGoogle Scholar
  20. Liu WH, Chen Y, Bai XW, Yao HM, Zhang XG, Yan XW, Lai R (2016) Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris. Chin J Nat Med 14:677–682PubMedGoogle Scholar
  21. Mourao CB, Heghinian MD, Barbosa EA, Mari F, Bloch CJ, Restano-Cassulini R, Possani LD, Schwartz EF (2013) Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family. Biochemistry 52:2440–2452CrossRefPubMedGoogle Scholar
  22. Nicholson GM (2007a) Fighting the global pest problem: preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422CrossRefPubMedGoogle Scholar
  23. Nicholson GM (2007b) Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 49:490–512CrossRefPubMedGoogle Scholar
  24. Oliveira LC, Campos FV, Figueiredo SG, Cordeiro MN, Adaime BR, Richardson M, Pimenta AM, Martin-Eauclaire MF, Beirao PS, De Lima ME (2015) Beta/delta-prit1, a highly insecticidal toxin from the venom of the brazilian spider Phoneutria reidyi (f.O. Pickard-cambridge, 1897). Toxicon 104:73–82. doi: 10.1016/j.toxicon.2015.07.010 CrossRefPubMedGoogle Scholar
  25. Paiva AL, Matavel A, Peigneur S, Cordeiro MN, Tytgat J, Diniz MR, de Lima ME (2016) Differential effects of the recombinant toxin pntx4(5–5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie 121:326–335CrossRefPubMedGoogle Scholar
  26. Schuhmacher LN, Srivats S, Smith ES (2015) Structural domains underlying the activation of acid-sensing ion channel 2a. Mol Pharmacol 87:561–571CrossRefPubMedPubMedCentralGoogle Scholar
  27. Smith JJ, Herzig V, King GF, Alewood PF (2013) The insecticidal potential of venom peptides. Cell Mol Life Sci CMLS 70:3665–3693CrossRefPubMedGoogle Scholar
  28. Tedford HW, Fletcher JI, King GF (2001) Functional significance of the beta hairpin in the insecticidal neurotoxin omega-atracotoxin-Hv1a. J Biol Chem 276:26568–26576CrossRefPubMedGoogle Scholar
  29. Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV (2013) Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J 280:6247–6261CrossRefPubMedGoogle Scholar
  30. Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM (2012) Spider-venom peptides as bioinsecticides. Toxins 4:191–227CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R (2012) Chemical punch packed in venoms makes centipedes excellent predators. Mol Cell Proteom MCP 11:640–650CrossRefGoogle Scholar
  32. Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF (2013) Discovery of a selective nav1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci USA 110:17534–17539CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zambrowicz A, Pokora M, Setner B, Dąbrowska A, Szołtysik M, Babij K, Szewczuk Z, Trziszka T, Lubec G, Chrzanowska J (2015) Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids 47:369–380CrossRefPubMedGoogle Scholar
  34. Zhang PF, Chen P, Hu WJ, Liang SP (2003) Huwentoxin-V, a novel insecticidal peptide toxin from the spider Selenocosmia huwena, and a natural mutant of the toxin: indicates the key amino acid residues related to the biological activity. Toxicon 42:15–20CrossRefPubMedGoogle Scholar
  35. Zhong Y, Song B, Mo G, Yuan M, Li H, Wang P, Yuan M, Lu Q (2014) A novel neurotoxin from venom of the spider, Brachypelma albopilosum. PloS One 9:e110221CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Lin Jin
    • 1
  • Mingqian Fang
    • 1
  • Mengrou Chen
    • 1
  • Chunling Zhou
    • 1
  • Rose Ombati
    • 2
    • 3
    • 5
  • Md Abdul Hakim
    • 2
  • Guoxiang Mo
    • 1
  • Ren Lai
    • 1
    • 2
    • 3
  • Xiuwen Yan
    • 1
  • Yumin Wang
    • 4
  • Shilong Yang
    • 2
  1. 1.College of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.Key Laboratory of Animal Models and Human Disease MechanismsChinese Academy of Sciences and Yunnan Province, Kunming Institute of ZoologyKunmingChina
  3. 3.Sino-African Joint Research CenterCAS, Kunming Institute of ZoologyKunmingChina
  4. 4.Clinical LaboratoryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations