Amino Acids

, Volume 49, Issue 6, pp 1053–1067 | Cite as

Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup

  • Kata Horváti
  • Bernadett Bacsa
  • Tamás Mlinkó
  • Nóra Szabó
  • Ferenc Hudecz
  • Ferenc Zsila
  • Szilvia Bősze
Original Article


Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 μM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.


Cationic peptides Cell penetrating peptide Antimicrobial peptide Antibacterial drug carrier Haemolysis Tuberculosis 



This work was supported by the Hungarian Research Fund (115431 and 104275) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (bo_87_15). The authors thank Dr. Hedvig Medzihradszky-Schweiger for the amino acid analysis and Mr. Sándor Dávid for the antimycobacterial testing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


This study was funded by the Hungarian Research Fund (115431 and 104275) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (bo_87_15).

Informed consent

The authors confirm that this work is new and original and not under consideration elsewhere. Our institute, the MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, and all authors have agreed to the submission of this manuscript.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

726_2017_2402_MOESM1_ESM.docx (234 kb)
Supplementary material 1 (DOCX 234 kb)


  1. Amon MA, Ali M, Bender V, Hall K, Aguilar MI, Aldrich-Wright J, Manolios N (2008) Kinetic and conformational properties of a novel T-cell antigen receptor transmembrane peptide in model membranes. J Pept Sci 14:714–724. doi: 10.1002/psc.987 CrossRefPubMedGoogle Scholar
  2. Andreu D, Ubach J, Boman A, Wahlin B, Wade D, Merrifield RB, Boman HG (1992) Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett 296:190–194. doi: 10.1016/0014-5793(92)80377-S CrossRefPubMedGoogle Scholar
  3. Andreu D, Carreno C, Linde C, Boman HG, Andersson M (1999) Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem J 344:845–849. doi: 10.1042/bj3440845 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bai KB, Láng O, Orbán E, Szabó R, Kőhidai L, Hudecz F, Mező G (2008) Design, synthesis, and in vitro activity of novel drug delivery systems containing tuftsin derivatives and methotrexate. Bioconjug Chem 19:2260–2269. doi: 10.1021/bc800115w CrossRefPubMedGoogle Scholar
  5. Baranyai Z, Krátký M, Vinšová J, Szabó N, Senoner Z, Horváti K, Stolaříková J, Dávid S, Bősze S (2015) Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates. Eur J Med Chem 101:692–704. doi: 10.1016/j.ejmech.2015.07.001 CrossRefPubMedGoogle Scholar
  6. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343. doi: 10.1038/nature17042 CrossRefPubMedGoogle Scholar
  7. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329. doi: 10.1074/jbc.M413406200 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chongsiriwatana NP et al (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. PNAS 105:2794–2799. doi: 10.1073/pnas.0708254105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M. (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12622. doi: 10.1021/bi960835f CrossRefPubMedGoogle Scholar
  10. Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–150. doi: 10.1016/S0014-5793(01)02648-5 CrossRefPubMedGoogle Scholar
  11. Davanço MG, Aguiar AC, Dos Santos LA, Padilha EC, Campos ML, de Andrade CR, da Fonseca LM, Dos Santos JL, Chin CM, Krettli AU, Peccinini RG (2014) Evaluation of antimalarial activity and toxicity of a new primaquine prodrug. PLoS One. doi: 10.1371/journal.pone.0105217 PubMedPubMedCentralGoogle Scholar
  12. Dennison SR, Phoenix DA (2014) Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide model in 5. Eur Biophys J 43:423–432. doi: 10.1007/s00249-014-0974-9 CrossRefPubMedGoogle Scholar
  13. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450 (PMID:8144628)PubMedGoogle Scholar
  14. El-Andaloussi S, Holm T, Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11:3597–3611. doi: 10.2174/138161205774580796 CrossRefPubMedGoogle Scholar
  15. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188. doi: 10.1016/0092-8674(88)90262-0 CrossRefPubMedGoogle Scholar
  16. Habermann E (1972) Bee and wasp venoms. Science 177:314–322. doi: 10.1126/science.177.4046.314 CrossRefPubMedGoogle Scholar
  17. Helmerhorst EJ, Van’t Hof W, Veerman EC, Simoons-Smit I, Amerongen AVN (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochemistry 326:39–45 (WOS:A1997XR05800005)CrossRefGoogle Scholar
  18. Helmerhorst EJ, Reijnders IM, van’t Hof W, Veerman ECI, Amerongen AVN (1999) A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett 449:105–110. doi: 10.1016/S0014-5793(99)00411-1 CrossRefPubMedGoogle Scholar
  19. Herbel V, Wink M (2016) Mode of action and membrane specificity of the antimicrobial peptide snakin-2. Peerj. doi: 10.7717/peerj.1987 PubMedPubMedCentralGoogle Scholar
  20. Hollmann A et al (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces 141:528–536. doi: 10.1016/j.colsurfb.2016.02.003 CrossRefPubMedGoogle Scholar
  21. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. PNAS 78:3824–3828 (PMID: 6167991)CrossRefPubMedPubMedCentralGoogle Scholar
  22. Horváti K, Bacsa B, Szabó N, Dávid S, Mező G, Grolmusz V, Vértessy B, Hudecz F, Bősze S (2012) Enhanced cellular uptake of a new, in silico identified antitubercular candidate by peptide conjugation. Bioconjug Chem. doi: 10.1021/bc200221t PubMedGoogle Scholar
  23. Horváti K, Bacsa B, Szabó N, Fodor K, Balka G, Rusvai M, Kiss É, Mező G, Grolmusz V, Vértessy B, Hudecz F, Bősze S (2015) Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis 95:S207–S211. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  24. Hudecz F, Bánóczi Z, Csík G (2005) Medium-sized peptides as built in carriers for biologically active compounds. Med Res Rev 25:679–736. doi: 10.1002/med.20034 CrossRefPubMedGoogle Scholar
  25. Kaushik NK, Sharma J, Sahal D (2012) Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malar J 11:256. doi: 10.1186/1475-2875-11-256 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39:8648–8654. doi: 10.1021/bi0004549 CrossRefPubMedGoogle Scholar
  27. Langel U, Pooga M, Kairane C, Zilmer M, Bartfai T (1996) A galanin–mastoparan chimeric peptide activates the Na+, K(+)-ATPase and reverses its inhibition by ouabain. Regul Pept 62:47–52. doi: 10.1016/0167-0115(96)00002-X CrossRefPubMedGoogle Scholar
  28. Lee J, Lee DG (2008) Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 40:370–376. doi: 10.3858/emm.2008.40.4.370 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li Q, Dong C, Deng A, Katsumata M, Nakadai A, Kawada T, Okada S, Clayberger C, Krensky AM (2005) Hemolysis of erythrocytes by granulysin-derived peptides but not by granulysin. Antimicrob Agents Chemother 49:388–397. doi: 10.1128/AAC.49.1.388-397.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lienhardt C, Glaziou P, Uplekar M, Lonnroth K, Getahun H, Raviglione M (2012) Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol 10:407–416. doi: 10.1038/nrmicro2797 PubMedGoogle Scholar
  31. Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593. doi: 10.1046/j.1471-4159.1997.69020581.x CrossRefPubMedGoogle Scholar
  32. Magzoub M, Eriksson LE, Graslund A (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim Biophys Acta 1563:53–63. doi: 10.1016/S0005-2736(02)00373-5 CrossRefPubMedGoogle Scholar
  33. Maher S, McClean S (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71:1289–1298. doi: 10.1016/j.bcp.2006.01.012 CrossRefPubMedGoogle Scholar
  34. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472. doi: 10.1016/j.coph.2006.04.006 CrossRefPubMedGoogle Scholar
  35. Mező G, Kalászi A, Reményi J, Majer Z, Hilbert Á, Láng O, Kőhidai L, Barna K, Gaál D, Hudecz F (2004) Synthesis, conformation, and immunoreactivity of new carrier molecules based on repeated tuftsin-like sequence. Biopolymers 73:645–656. doi: 10.1002/bip.20024 CrossRefPubMedGoogle Scholar
  36. Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59:4112–4120. doi: 10.1128/AAC.00237-15 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217. doi: 10.1042/BC20070116 CrossRefPubMedGoogle Scholar
  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  39. Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408–413. doi: 10.1006/bbrc.1996.0071 CrossRefPubMedGoogle Scholar
  40. Pistolesi S, Pogni R, Feix JB (2007) Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. Biophys J 93:1651–1660. doi: 10.1529/biophysj.107.104034 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Portlock SH, Clague MJ, Cherry RJ (1990) Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim Biophys Acta 1030:1–10. doi: 10.1016/0005-2736(90)90231-C CrossRefPubMedGoogle Scholar
  42. Radis-Baptista G, de la Torre BG, Andreu D (2008) A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J Med Chem 51:7041–7044. doi: 10.1021/jm8009475 CrossRefPubMedGoogle Scholar
  43. Raghuraman H, Chattopadhyay A (2006) Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers 83:111–121. doi: 10.1002/bip.20536 CrossRefPubMedGoogle Scholar
  44. Raghuraman H, Ganguly S, Chattopadhyay A (2006) Effect of ionic strength on the organization and dynamics of membrane-bound melittin. Biophys Chem 124:115–124. doi: 10.1016/j.bpc.2006.06.011 CrossRefPubMedGoogle Scholar
  45. Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547. doi: 10.1016/j.ijantimicag.2004.09.005 CrossRefPubMedGoogle Scholar
  46. Reed J, Reed TA (1997) A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Anal Biochem 254:36–40. doi: 10.1006/abio.1997.2355 CrossRefPubMedGoogle Scholar
  47. Rogers RN, Yasuda SK (1959) Rapid microdetermination of fluorine in organic compounds. Anal Chem 31:616–617. doi: 10.1021/ac50164a049 CrossRefGoogle Scholar
  48. Roux S, Zekri E, Rousseau B, Paternostre M, Cintrat JC, Fay N (2008) Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approaches. J Pept Sci 14:354–359. doi: 10.1002/psc.951 CrossRefPubMedGoogle Scholar
  49. Saberwal G, Nagaraj R (1994) Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta 1197:109–131. doi: 10.1016/0304-4157(94)90002-7 CrossRefPubMedGoogle Scholar
  50. Slater TF, Sawyer B, Straeuli U (1963) Studies on succinate-tetrazolium reductase systems. III. points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393. doi: 10.1016/0006-3002(63)90513-4 CrossRefPubMedGoogle Scholar
  51. Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44:12094–12106. doi: 10.1021/bi050765p CrossRefPubMedGoogle Scholar
  52. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125. doi: 10.1126/science.282.5386.121 CrossRefPubMedGoogle Scholar
  53. Sula L (1963) Who co-operative studies on a simple culture technique for the isolation of mycobacteria. 1. Preparation, lyophilization and reconstitution of a simple semi-synthetic concentrated liquid medium; culture technique; growth pattern of different mycobacteria. Bull World Health Organ 29:589–606 (PMCID: PMC2555071)PubMedPubMedCentralGoogle Scholar
  54. Sula L, Sundaresan TK (1963) Who co-operative studies on a simple culture technique for the isolation of mycobacteria. 2. Comparison of the efficacy of lyophilized liquid medium with that of Loewenstein–Jensen (L–J) medium. Bull World Health Organ 29:607–625 (PMCID: 2555071)PubMedPubMedCentralGoogle Scholar
  55. Toniolo C, Formaggio F, Woody RW (2012) Electronic circular dichroism of peptides. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW (eds) Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules, vol 2, pp 499–544. doi: 10.1002/9781118120392.ch15
  56. Vemuri S (2005) Comparison of assays for determination of peptide content for lyophilized thymalfasin. J Pept Res 65:433–439. doi: 10.1111/j.1399-3011.2005.00225.x CrossRefPubMedGoogle Scholar
  57. Vinsova J, Cermakova K, Tomeckova A, Ceckova M, Jampilek J, Cermak P, Kunes J, Dolezal M, Staud F (2006) Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg Med Chem 14:5850–5865. doi: 10.1016/j.bmc.2006.05.030 CrossRefPubMedGoogle Scholar
  58. Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786:126–138. doi: 10.1016/j.bbcan.2008.03.001 PubMedGoogle Scholar
  59. Wu S, Nie Y, Zeng XC, Cao H, Zhang L, Zhou L, Yang Y, Luo X, Liu Y. (2014) Genomic and functional characterization of three new venom peptides from the scorpion Heterometrus spinifer. Peptides 53:30–41. doi: 10.1016/j.peptides.2013.12.012 CrossRefPubMedGoogle Scholar
  60. Yang QZ, Wang C, Lang L, Zhou Y, Wang H, Shang DJ (2013) Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res 36:1302–1310. doi: 10.1007/s12272-013-0112-8 CrossRefPubMedGoogle Scholar
  61. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55. doi: 10.1124/pr.55.1.2 CrossRefPubMedGoogle Scholar
  62. Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176. doi: 10.1007/s00018-011-0710-x CrossRefPubMedGoogle Scholar
  63. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453. doi: 10.1073/pnas.84.15.5449 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zeitler B, Diaz AH, Dangel A, Thellmann M, Meyer H, Sattler M, Lindermayr C (2013) De-novo design of antimicrobial peptides for plant protection. PLoS One. doi: 10.1371/journal.pone.0071687 Google Scholar
  65. Zhu WL, Shin SY (2009) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem Biol Drug Des 73:209–215. doi: 10.1111/j.1747-0285.2008.00769.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of SciencesBudapestHungary
  2. 2.Laboratory of BacteriologyKorányi National Institute for Tuberculosis and Respiratory MedicineBudapestHungary
  3. 3.Department of Organic ChemistryEötvös Loránd UniversityBudapestHungary
  4. 4.Biomolecular Self-Assembly Group, Research Centre for Natural Sciences, Institute of Materials and Environmental ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations