Amino Acids

, Volume 49, Issue 1, pp 1–20 | Cite as

Control of seizures by ketogenic diet-induced modulation of metabolic pathways

  • Ryan M. ClantonEmail author
  • Guoyao Wu
  • Gamal Akabani
  • Rodolfo AramayoEmail author
Review Article


Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug’s mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD’s modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, d-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD’s ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.


Epilepsy Ketogenic diet Hypomyelination Malate-aspartate shuttle Ketone bodies Mitochondrial disorders Short chain fatty acids Medium chain fatty acids Monocarboxylic acid transporters 



Ryan Clanton was supported by the National Space Biomedical Research Institute funded Mentored Research Fellowship in Space Life Sciences (NASA NCC 9-58). This work was supported by U. S. Public Health Service Grant GM58770 to R.A.

Compliance with ethical standards

We state that: The manuscript has not been submitted to more than one journal for simultaneous consideration, has not been published previously (partly or in full), has not been split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”). No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were our own “plagiarism”. Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried out, before this work was submitted. Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Conflict of interest

None of the authors have a conflict of interest.

Research involving human participants and/or animals

This review is based on previously published studies and does not require IRB approval.

Informed consent

Not Applicable.


  1. Ableitner A, Herz A (1987) Changes in local cerebral glucose utilization induced by the beta-carbolines FG 7142 and DMCM reveal brain structures involved in the control of anxiety and seizure activity. J Neurosci 7(4):1047–1055PubMedGoogle Scholar
  2. Ahmed SS, Gao G (2015) Making the white matter matters: progress in understanding Canavan’s disease and therapeutic interventions through eight decades. JIMD Rep 19:11–22. doi: 10.1007/8904_2014_356 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19(10):1974–1984. doi: 10.1093/hmg/ddq076 PubMedCrossRefGoogle Scholar
  4. Arida RM, de Almeida A-CG, Cavalheiro EA, Scorza FA (2013) Experimental and clinical findings from physical exercise as complementary therapy for epilepsy. Epilepsy Behav 26(3):273–278. doi: 10.1016/j.yebeh.2012.07.025 PubMedCrossRefGoogle Scholar
  5. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56(4):1376–1386PubMedCrossRefGoogle Scholar
  6. Bailey EE, Pfeifer HH, Thiele EA (2005) The use of diet in the treatment of epilepsy. Epilepsy Behav 6(1):4–8. doi: 10.1016/j.yebeh.2004.10.006 PubMedCrossRefGoogle Scholar
  7. Ballard HJ (1991) The influence of lactic acid on adenosine release from skeletal muscle in anaesthetized dogs. J Physiol 433:95–108PubMedPubMedCentralCrossRefGoogle Scholar
  8. BallarÍN M, Fredholm BB, Ambrosio S, Mahy N (1991) Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 142(1):97–103. doi: 10.1111/j.1748-1716.1991.tb09133.x PubMedCrossRefGoogle Scholar
  9. Barañano KW, Hartman AL (2008) The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 10(6):410–419PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bélanger M, Allaman I, Magistretti Pierre J (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. doi: 10.1016/j.cmet.2011.08.016 PubMedCrossRefGoogle Scholar
  11. Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15(4):361–370. doi: 10.1093/cercor/bhh138 (New York, NY: 1991) PubMedCrossRefGoogle Scholar
  12. Bilger A, Nehlig A (1992) Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal development. II. Glucose-6-phosphate dehydrogenase and beta-hydroxybutyrate dehydrogenase. Int J Dev Neurosci 10(2):143–152PubMedCrossRefGoogle Scholar
  13. Bliss TM, Sapolsky RM (2001) Interactions among glucose, lactate and adenosine regulate energy substrate utilization in hippocampal cultures. Brain Res 899(1–2):134–141. doi: 10.1016/S0006-8993(01)02218-1 PubMedCrossRefGoogle Scholar
  14. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84(3):249–262. doi: 10.1016/j.pneurobio.2007.12.002 PubMedCrossRefGoogle Scholar
  15. Boison D (2013) Adenosine and seizure termination: endogenous mechanisms. Epilepsy Curr 13(1):35–37. doi: 10.5698/1535-7511-13.1.35 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60(2):223–235. doi: 10.1002/ana.20899 PubMedCrossRefGoogle Scholar
  17. Bough KJ, Paquet M, Paré J-F, Hassel B, Smith Y, Hall RA, Dingledine R (2007) Evidence against enhanced glutamate transport in the anticonvulsant mechanism of the ketogenic diet. Epilepsy Res 74(2–3):232–236. doi: 10.1016/j.eplepsyres.2007.03.002 PubMedCrossRefGoogle Scholar
  18. Brooks GA (1985) Lactate:Glycolytic end product and oxidative substrate during sustained exercise in mammals—the “Lactate Shuttle”. In: Gilles R (ed) Circulation, respiration, and metabolism: current comparative approaches. Springer, Berlin, pp 208–218. doi: 10.1007/978-3-642-70610-3_15 CrossRefGoogle Scholar
  19. Brooks GA (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587(Pt 23):5591–5600. doi: 10.1113/jphysiol.2009.178350 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Caraballo RH, Flesler S, Armeno M, Fortini S, Agustinho A, Mestre G, Cresta A, Buompadre MC, Escobal N (2014) Ketogenic diet in pediatric patients with refractory focal status epilepticus. Epilepsy Res 108(10):1912–1916. doi: 10.1016/j.eplepsyres.2014.09.033 PubMedCrossRefGoogle Scholar
  21. Chan O, Paranjape SA, Horblitt A, Zhu W, Sherwin RS (2013) Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counter regulatory failure in recurrent hypoglycemia and diabetes. Diabetes 62(12):4239–4246. doi: 10.2337/db13-0770 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, Bondy CA (2003) A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 144(6):2676–2682. doi: 10.1210/en.2002-0057 PubMedCrossRefGoogle Scholar
  23. Chu AC-Y, Ho PW-L, Kwok KH-H, Ho JW-M, Chan K-H, Liu H-F, Kung MH-W, Ramsden DB, Ho S-L (2009) Mitochondrial UCP4 attenuates MPP+- and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Free Radic Biol Med 46(6):810–820. doi: 10.1016/j.freeradbiomed.2008.12.015 PubMedCrossRefGoogle Scholar
  24. Chuang Y-C, Lin T-K, Huang H-Y, Chang W-N, Liou C-W, Chen S-D, Chang AY, Chan SH (2012) Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 9(1):1–18. doi: 10.1186/1742-2094-9-184 CrossRefGoogle Scholar
  25. Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3(1):12–29PubMedCrossRefGoogle Scholar
  26. Cullingford TE, Eagles DA, Sato H (2002) The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain. Epilepsy Res 49(2):99–107PubMedCrossRefGoogle Scholar
  27. Dahlin M, Elfving Å, Ungerstedt U, Åmark P (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64(3):115–125. doi: 10.1016/j.eplepsyres.2005.03.008 PubMedCrossRefGoogle Scholar
  28. Dahlin M, Martin DA, Hedlund Z, Jonsson M, von Dobeln U, Wedell A (2015) The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia 56(11):e176–e181. doi: 10.1111/epi.13193 PubMedCrossRefGoogle Scholar
  29. Daikhin Y, Yudkoff M (1998) Ketone bodies and brain glutamate and GABA metabolism. Dev Neurosci 20(4–5):358–364PubMedCrossRefGoogle Scholar
  30. Deng-Bryant Y, Prins ML, Hovda DA, Harris NG (2011) Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J Neurotrauma 28(9):1813–1825. doi: 10.1089/neu.2011.1822 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144(11):5014–5021. doi: 10.1210/en.2003-0667 PubMedCrossRefGoogle Scholar
  32. Eftekhari S, Mehrabi S, Soleimani M, Hassanzadeh G, Shahrokhi A, Mostafavi H, Hayat P, Barati M, Mehdizadeh H, Rahmanzadeh R, Hadjighassem MR, Joghataei MT (2014) BDNF modifies hippocampal KCC2 and NKCC1 expression in a temporal lobe epilepsy model. Acta Neurobiol Exp 74(3):276–287Google Scholar
  33. Eintrei C, Sokoloff L, Smith CB (1999) Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 82(4):596–602PubMedCrossRefGoogle Scholar
  34. Falk MJ, Li D, Gai X, McCormick E, Place E, Lasorsa FM, Otieno FG, Hou C, Kim CE, Abdel-Magid N, Vazquez L, Mentch FD, Chiavacci R, Liang J, Liu X, Jiang H, Giannuzzi G, Marsh ED, Yiran G, Tian L, Palmieri F, Hakonarson H (2014) AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. JIMD Rep 14:77–85. doi: 10.1007/8904_2013_287 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fontanesi F, Jin C, Tzagoloff A, Barrientos A (2008) Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Hum Mol Genet 17(6):775–788. doi: 10.1093/hmg/ddm349 PubMedCrossRefGoogle Scholar
  36. Fornai F, Dybdal DJ, Proctor MR, Gale K (1994) Focal intracerebral elevation of l-lactate is anticonvulsant. Eur J Pharmacol 254(3):R1–R2PubMedCrossRefGoogle Scholar
  37. Ganzella M, Faraco RB, Almeida RF, Fernandes VF, Souza DO (2011) Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. Pharmacol Biochem Behav 100(2):271–274. doi: 10.1016/j.pbb.2011.09.001 PubMedCrossRefGoogle Scholar
  38. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9(11):1382–1387. doi: 10.1038/nn1791 PubMedCrossRefGoogle Scholar
  39. Genc S, Kurnaz IA, Ozilgen M (2011) Astrocyte–neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—in silico study supported by in vitro expression data. BMC Syst Biol 5(1):1–13. doi: 10.1186/1752-0509-5-162 CrossRefGoogle Scholar
  40. Gomez-Lira G, Mendoza-Torreblanca JG, Granados-Rojas L (2011) Ketogenic diet does not change NKCC1 and KCC2 expression in rat hippocampus. Epilepsy Res 96(1–2):166–171. doi: 10.1016/j.eplepsyres.2011.05.017 PubMedCrossRefGoogle Scholar
  41. Haces ML, Hernandez-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211(1):85–96. doi: 10.1016/j.expneurol.2007.12.029 PubMedCrossRefGoogle Scholar
  42. Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49(1):227–231. doi: 10.1111/j.1471-4159.1987.tb03419.x PubMedCrossRefGoogle Scholar
  43. Hagenfeldt L, Bollgren I, Venizelos N (1987) N-acetylaspartic aciduria due to aspartoacylase deficiency—a new aetiology of childhood leukodystrophy. J Inherit Metab Dis 10(2):135–141. doi: 10.1007/bf01800038 PubMedCrossRefGoogle Scholar
  44. Han Y, Lin Y, Xie N, Xue Y, Tao H, Rui C, Xu J, Cao L, Liu X, Jiang H, Chi Z (2011) Impaired mitochondrial biogenesis in hippocampi of rats with chronic seizures. Neuroscience 194:234–240. doi: 10.1016/j.neuroscience.2011.07.068 PubMedCrossRefGoogle Scholar
  45. Hartman AL, Gasior M, Vining EPG, Rogawski MA (2007) The neuropharmacology of the ketogenic diet. Pediatr Neurol 36(5):281–292. doi: 10.1016/j.pediatrneurol.2007.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hartman AL, Zheng X, Bergbower E, Kennedy M, Hardwick JM (2010) Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia 51(8):1395–1402. doi: 10.1111/j.1528-1167.2010.02577.x PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hartman AL, Rubenstein JE, Kossoff EH (2013) Intermittent fasting: a “new” historical strategy for controlling seizures? Epilepsy Res 104(3):275–279. doi: 10.1016/j.eplepsyres.2012.10.011 PubMedCrossRefGoogle Scholar
  48. Hartman AL, Santos P, O’Riordan KJ, Stafstrom CE, Hardwick JM (2015) Potent anti-seizure effects of d-leucine. Neurobiol Dis 82:46–53. doi: 10.1016/j.nbd.2015.05.013 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 3(8):e2915. doi: 10.1371/journal.pone.0002915 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hentschke M, Wiemann M, Hentschke S, Kurth I, Hermans-Borgmeyer I, Seidenbecher T, Jentsch TJ, Gal A, Hübner CA (2006) Mice with a targeted disruption of the Cl/HCO3 exchanger AE3 display a reduced seizure threshold. Mol Cell Biol 26(1):182–191. doi: 10.1128/mcb.26.1.182-191.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ho PW, Ho JW, Liu H-F, So DH, Tse ZH, Chan K-H, Ramsden DB, Ho S-L (2012a) Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson’s disease. Transl Neurodegener 1(1):1–9. doi: 10.1186/2047-9158-1-3 CrossRefGoogle Scholar
  52. Ho PW-L, Ho JW-M, Tse H-M, So DH-F, Yiu DC-W, Liu H-F, Chan K-H, Kung MH-W, Ramsden DB, Ho S-L (2012b) Uncoupling protein-4 (UCP4) increases ATP supply by interacting with mitochondrial complex II in neuroblastoma cells. PLoS One 7(2):e32810. doi: 10.1371/journal.pone.0032810 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hogg DW, Pamenter ME, Dukoff DJ, Buck LT (2015) Decreases in mitochondrial reactive oxygen species initiate GABA(A) receptor-mediated electrical suppression in anoxia-tolerant turtle neurons. J Physiol 593(10):2311–2326. doi: 10.1113/jp270474 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 19(23):10417–10427PubMedGoogle Scholar
  55. Hou YQ, Yao K, Yin YL, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342Google Scholar
  56. Hu ZG, Wang HD, Jin W, Yin HX (2009) Ketogenic diet reduces cytochrome c release and cellular apoptosis following traumatic brain injury in juvenile rats. Ann Clin Lab Sci 39(1):76–83PubMedGoogle Scholar
  57. Huang H-S, Chen C-J, Chang W-C (1999) The CCAAT-box binding factor NF-Y is required for the expression of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. FEBS Lett 455(1–2):111–116. doi: 10.1016/S0014-5793(99)00866-2 PubMedCrossRefGoogle Scholar
  58. Hughes SD, Kanabus M, Anderson G, Hargreaves IP, Rutherford T, O’Donnell M, Cross JH, Rahman S, Eaton S, Heales SJ (2014) The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem 129(3):426–433. doi: 10.1111/jnc.12646 PubMedCrossRefGoogle Scholar
  59. Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43(5):255–264. doi: 10.1152/physiolgenomics.00177.2010 PubMedCrossRefGoogle Scholar
  60. Ilie A, Raimondo JV, Akerman CJ (2012) Adenosine release during seizures attenuates GABAA receptor-mediated depolarization. J Neurosci 32(15):5321–5332. doi: 10.1523/jneurosci.5412-11.2012 PubMedCrossRefGoogle Scholar
  61. Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106(3):1044–1051. doi: 10.1111/j.1471-4159.2008.05460.x PubMedCrossRefGoogle Scholar
  62. Jeong HJ, Kim H, Kim YK, Park SK, Kang DW, Yoon D (2010) The ketogenic diet suppresses the cathepsin E expression induced by kainic acid in the rat brain. Yonsei Med J 51(5):653–660. doi: 10.3349/ymj.2010.51.5.653 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588Google Scholar
  64. Jourdain P, Allaman I, Rothenfusser K, Fiumelli H, Marquet P, Magistretti PJ (2016) l-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade. Sci Rep 6. doi: 10.1038/srep21250
  65. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68(1):99–112. doi: 10.1016/j.neuron.2010.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kang HC, Lee YM, Kim HD, Lee JS, Slama A (2007) Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 48(1):82–88. doi: 10.1111/j.1528-1167.2006.00906.x PubMedGoogle Scholar
  67. Kim DY, Davis LM, Sullivan PG, Maalouf M, Simeone TA, van Brederode J, Rho JM (2007) Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem 101(5):1316–1326. doi: 10.1111/j.1471-4159.2007.04483.x PubMedCrossRefGoogle Scholar
  68. Kim-Han JS, Reichert SA, Quick KL, Dugan LL (2001) BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J Neurochem 79(3):658–668. doi: 10.1046/j.1471-4159.2001.00604.x PubMedCrossRefGoogle Scholar
  69. Kinsella JE (1990) Lipids, membrane receptors, and enzymes: effects of dietary fatty acids. J Parenter Enteral Nutr 14(5 suppl):200S–217S. doi: 10.1177/014860719001400511 CrossRefGoogle Scholar
  70. Kleene R, Loers G, Langer J, Frobert Y, Buck F, Schachner M (2007) Prion protein regulates glutamate-dependent lactate transport of astrocytes. J Neurosci 27(45):12331–12340. doi: 10.1523/jneurosci.1358-07.2007 PubMedCrossRefGoogle Scholar
  71. Klepper J, Diefenbach S, Kohlschütter A, Voit T (2004) Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 70(3):321–327. doi: 10.1016/j.plefa.2003.07.004 PubMedCrossRefGoogle Scholar
  72. Klepper J, Engelbrecht V, Scheffer H, van der Knaap MS, Fiedler A (2007) GLUT1 deficiency with delayed myelination responding to ketogenic diet. Pediatr Neurol 37(2):130–133. doi: 10.1016/j.pediatrneurol.2007.03.009 PubMedCrossRefGoogle Scholar
  73. Kobow K, Kaspi A, Harikrishnan KN, Kiese K, Ziemann M, Khurana I, Fritzsche I, Hauke J, Hahnen E, Coras R, Muhlebner A, El-Osta A, Blumcke I (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 126(5):741–756. doi: 10.1007/s00401-013-1168-8 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kuhr WG, Korf J (1988) Extracellular lactic acid as an indicator of brain metabolism: continuous on-line measurement in conscious, freely moving rats with intrastriatal dialysis. J Cereb Blood Flow Metab 8(1):130–137. doi: 10.1038/jcbfm.1988.17 PubMedCrossRefGoogle Scholar
  75. Lapin IP (1981) Nicotinamide, inosine and hypoxanthine, putative endogenous ligands of the benzodiazepine receptor, opposite to diazepam are much more effective against kynurenine-induced seizures than against pentylenetetrazol-induced seizures. Pharmacol Biochem Behav 14(5):589–593. doi: 10.1016/0091-3057(81)90117-9 PubMedCrossRefGoogle Scholar
  76. Larmet Y, Reibel S, Carnahan J, Nawa H, Marescaux C, Depaulis A (1995) Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. Neuroreport 6(14):1937–1941PubMedCrossRefGoogle Scholar
  77. Lauritzen F, Perez EL, Melillo ER, Roh J-M, Zaveri HP, Lee T-SW, Wang Y, Bergersen LH, Eid T (2012) Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis 45(1):165–176. doi: 10.1016/j.nbd.2011.08.001 PubMedCrossRefGoogle Scholar
  78. Lee HHC, Deeb TZ, Walker JA, Davies PA, Moss SJ (2011) NMDA receptor activity downregulates KCC2 resulting in depolarizing GABA(A) receptor mediated currents. Nat Neurosci 14(6):736–743. doi: 10.1038/nn.2806 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38(6):519–527PubMedCrossRefGoogle Scholar
  80. Liu Y-mC (2008) Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia 49:33–36. doi: 10.1111/j.1528-1167.2008.01830.x PubMedCrossRefGoogle Scholar
  81. Liu YM, Wang HS (2013) Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed J 36(1):9–15. doi: 10.4103/2319-4170.107154 PubMedCrossRefGoogle Scholar
  82. Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26(4):387–395PubMedCrossRefGoogle Scholar
  83. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23(19):7337–7342PubMedGoogle Scholar
  84. Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145(1):256–264. doi: 10.1016/j.neuroscience.2006.11.065 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Maalouf M, Rho JM, Mattson MP (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59(2):293–315PubMedCrossRefGoogle Scholar
  86. MacMillan V, Leake J, Chung T, Bovell M (1987) The effect of valproic acid on the 5-hydroxyindoleacetic, homovanillic and lactic acid levels of cerebrospinal fluid. Brain Res 420(2):268–276PubMedCrossRefGoogle Scholar
  87. Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62. doi: 10.1111/j.1471-4159.2009.06003.x PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marangos PJ, Martino AM, Paul SM, Skolnick P (1981) The benzodiazepines and inosine antagonize caffeine-induced seizures. Psychopharmacology 72(3):269–273. doi: 10.1007/bf00431829 PubMedCrossRefGoogle Scholar
  89. Marosi K, Mattson MP (2014) BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 25(2):89–98PubMedCrossRefGoogle Scholar
  90. Masino SA, Dunwiddie TV (1999) Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 19(6):1932–1939PubMedGoogle Scholar
  91. Masino SA, Rho JM (2012) Mechanisms of ketogenic diet action. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US), BathesdaGoogle Scholar
  92. Masino SA, Kawamura M, Wasser CD, Pomeroy LT, Ruskin DN (2009) Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 7(3):257–268. doi: 10.2174/157015909789152164 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger JD, Aronica E, Boison D (2011) A ketogenic diet suppresses seizures in mice through adenosine A(1) receptors. J Clin Invest 121(7):2679–2683. doi: 10.1172/JCI57813 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Masino SA, Kawamura M Jr, Ruskin DN (2014) Chapter eleven—adenosine receptors and epilepsy: current evidence and future potential. In: Akihisa M (ed) International review of neurobiology, 119th edn. Academic Press, New York, pp 233–255. doi: 10.1016/B978-0-12-801022-8.00011-8 Google Scholar
  95. Mathews GC (2007) The dual roles of GABA in seizures and epilepsy generate more excitement. Epilepsy Curr 7(1):28–30. doi: 10.1111/j.1535-7511.2007.00159.x PubMedPubMedCentralCrossRefGoogle Scholar
  96. Matsumoto T, Numakawa T, Adachi N, Yokomaku D, Yamagishi S, Takei N, Hatanaka H (2001) Brain-derived neurotrophic factor enhances depolarization-evoked glutamate release in cultured cortical neurons. J Neurochem 79(3):522–530PubMedCrossRefGoogle Scholar
  97. Matsuzawa T, Sakazume M (1994) Effects of fasting on haematology and clinical chemistry values in the rat and dog. Comp Haematol Int 4(3):152–156. doi: 10.1007/bf00798356 CrossRefGoogle Scholar
  98. Mattson RH, Cramer JA, Collins JF, Smith DB, Delgado-Escueta AV, Browne TR, Williamson PD, Treiman DM, McNamara JO, McCutchen CB et al (1985) Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med 313(3):145–151. doi: 10.1056/nejm198507183130303 PubMedCrossRefGoogle Scholar
  99. McGowan PO, Meaney MJ, Szyf M (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 1237:12–24. doi: 10.1016/j.brainres.2008.07.074 PubMedPubMedCentralCrossRefGoogle Scholar
  100. McNally MA, Hartman AL (2012) Ketone bodies in epilepsy. J Neurochem 121(1):28–35. doi: 10.1111/j.1471-4159.2012.07670.x PubMedPubMedCentralCrossRefGoogle Scholar
  101. McNamara JO, Scharfman HE (2012) Temporal lobe epilepsy and the BDNF receptor, TrkB. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  102. Millichap J, Jones JD, Rudis BP (1964) Mechanism of anticonvulsant action of ketogenic diet: studies in animals with experimental seizures and in children with petit mal epilepsy. Am J Dis Child 107(6):593–604. doi: 10.1001/archpedi.1964.02080060595008 PubMedCrossRefGoogle Scholar
  103. Misiewicz Runyon A, So T-Y (2012) The use of ketogenic diet in pediatric patients with epilepsy. ISRN Pediatrics 2012:10. doi: 10.5402/2012/263139 CrossRefGoogle Scholar
  104. Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL, Goldberg AL (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93(5):2127–2133PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mo FM, Ballard HJ (2000) The effect of lactic acid on intracellular pH and adenosine output from superfused rat soleus muscle fibres. Life Sci 67(3):227–234. doi: 10.1016/S0024-3205(00)00624-X PubMedCrossRefGoogle Scholar
  106. Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA (2013) N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenergetics 5:11. doi: 10.3389/fnene.2013.00011 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mueller SG, Trabesinger AH, Boesiger P, Wieser HG (2001) Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 57(8):1422–1427PubMedCrossRefGoogle Scholar
  108. Nakagawa Y (2004) Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol Pharm Bull 27(7):956–960PubMedCrossRefGoogle Scholar
  109. Nyberg J, Åberg MAI, Torén K, Nilsson M, Ben-Menachem E, Kuhn HG (2013) Cardiovascular fitness and later risk of epilepsy: a Swedish population-based cohort study. Neurology 81(12):1051–1057. doi: 10.1212/WNL.0b013e3182a4a4c0 PubMedCrossRefGoogle Scholar
  110. Owen OE (2005) Ketone bodies as a fuel for the brain during starvation. Biochem Mol Biol Educ 33(4):246–251. doi: 10.1002/bmb.2005.49403304246 CrossRefGoogle Scholar
  111. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF (1967) Brain metabolism during fasting. J Clin Invest 46(10):1589–1595PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22(7):890–898PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. P Natl Acad Sci USA 91(22):10625–10629. doi: 10.1073/pnas.91.22.10625 CrossRefGoogle Scholar
  114. Pellerin L, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79(1–2):55–64. doi: 10.1002/jnr.20307 PubMedCrossRefGoogle Scholar
  115. Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. doi: 10.1002/glia.20528 PubMedCrossRefGoogle Scholar
  116. Perlman BJ, Goldstein DB (1984) Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 26(1):83–89PubMedGoogle Scholar
  117. Pierce JMS (2002) A disease once sacred. A history of the medical understanding of epilepsy. Brain 125(2):441–442. doi: 10.1093/brain/125.2.441 CrossRefGoogle Scholar
  118. Pierre K, Magistretti PJ, Pellerin L (2002) MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 22(5):586–595. doi: 10.1097/00004647-200205000-00010 PubMedCrossRefGoogle Scholar
  119. Pooya S, Liu X, Kumar VBS, Anderson J, Imai F, Zhang W, Ciraolo G, Ratner N, Setchell KDR, Yoshida Y, Jankowski MP, Dasgupta B (2014) The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun. doi: 10.1038/ncomms5993 PubMedPubMedCentralGoogle Scholar
  120. Prasad C, Rupar T, Prasad AN (2011) Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev 33(10):856–865. doi: 10.1016/j.braindev.2011.08.003 PubMedCrossRefGoogle Scholar
  121. Puckett SW, Reddy WJ (1979) A decrease in the malate-aspartate shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J Mol Cell Cardiol 11(2):173–187. doi: 10.1016/0022-2828(79)90462-0 PubMedCrossRefGoogle Scholar
  122. Rahman S (2012) Mitochondrial disease and epilepsy. Dev Med Child Neurol 54(5):397–406. doi: 10.1111/j.1469-8749.2011.04214.x PubMedCrossRefGoogle Scholar
  123. Randle P, Garland P, Hales C, Newsholme E (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789CrossRefGoogle Scholar
  124. Rheims S, Holmgren CD, Chazal G, Mulder J, Harkany T, Zilberter T, Zilberter Y (2009) GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. J Neurochem 110(4):1330–1338. doi: 10.1111/j.1471-4159.2009.06230.x PubMedCrossRefGoogle Scholar
  125. Rho JM (2010) Another look at early GABAergic neurotransmission: maybe it’s not so exciting after all! Epilepsy Curr 10(5):128–130. doi: 10.1111/j.1535-7511.2010.01378.x PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ringholm S, Grunnet Knudsen J, Leick L, Lundgaard A, Munk Nielsen M, Pilegaard H (2013) PGC-1α is required for exercise- and exercise training-induced UCP1 up-regulation in mouse white adipose tissue. PLoS One 8(5):e64123. doi: 10.1371/journal.pone.0064123 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Riss J, Cloyd J, Gates J, Collins S (2008) Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand 118(2):69–86. doi: 10.1111/j.1600-0404.2008.01004.x PubMedCrossRefGoogle Scholar
  128. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K(+)–Cl(−) cotransporter KCC2 and impairs neuronal Cl(−) extrusion. J Cell Biol 159(5):747–752. doi: 10.1083/jcb.200209011 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Robinet C, Pellerin L (2010) Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons. J Cereb Blood Flow Metab 30(2):286–298. doi: 10.1038/jcbfm.2009.208 PubMedCrossRefGoogle Scholar
  130. Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60(1):143–187PubMedGoogle Scholar
  131. Rolleston FS, Newsholme EA (1967) Effects of fatty acids, ketone bodies, lactate and pyruvate on glucose utilization by guinea-pig cerebral cortex slices. Biochem J 104(2):519–523PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rosen AS, David Andrew R (1991) Glucose concentration inversely alters neocortical slice excitability through an osmotic effect. Brain Res 555(1):58–64. doi: 10.1016/0006-8993(91)90859-T PubMedCrossRefGoogle Scholar
  133. Sabatini S, Kurtzman NA (2009) Bicarbonate therapy in severe metabolic acidosis. J Am Soc Nephrol 20(4):692–695. doi: 10.1681/asn.2007121329 PubMedCrossRefGoogle Scholar
  134. Sakurai T, Ramoz N, Barreto M, Gazdoiu M, Takahashi N, Gertner M, Dorr N, Gama Sosa MA, De Gasperi R, Perez G, Schmeidler J, Mitropoulou V, Le HC, Lupu M, Hof PR, Elder GA, Buxbaum JD (2010) Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders. Biol Psychiatry 67(9):887–894. doi: 10.1016/j.biopsych.2009.08.042 PubMedCrossRefGoogle Scholar
  135. Scharfman HE (2005) Brain-derived neurotrophic factor and epilepsy—a missing link? Epilepsy Curr 5(3):83–88. doi: 10.1111/j.1535-7511.2005.05312.x PubMedPubMedCentralCrossRefGoogle Scholar
  136. Scharfman HE, Goodman JH, Sollas AL, Croll SD (2002) Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp Neurol 174(2):201–214. doi: 10.1006/exnr.2002.7869 PubMedCrossRefGoogle Scholar
  137. Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8(3):221–225. doi: 10.1007/bf03033975 PubMedCrossRefGoogle Scholar
  138. Schutkowski A, Wege N, Stangl GI, König B B (2014) Tissue-specific expression of monocarboxylate transporters during fasting in mice. PLoS One 9(11):e112118. doi: 10.1371/journal.pone.0112118 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schwartzkroin PA (1999) Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Res 37(3):171–180. doi: 10.1016/S0920-1211(99)00069-8 PubMedCrossRefGoogle Scholar
  140. Shimizu-Okabe C, Tanaka M, Matsuda K, Mihara T, Okabe A, Sato K, Inoue Y, Fujiwara T, Yagi K, Fukuda A (2011) KCC2 was downregulated in small neurons localized in epileptogenic human focal cortical dysplasia. Epilepsy Res 93(2–3):177–184. doi: 10.1016/j.eplepsyres.2010.12.008 PubMedCrossRefGoogle Scholar
  141. Siebel AM, Piato AL, Capiotti KM, Seibt KJ, Bogo MR, Bonan CD (2011) PTZ-induced seizures inhibit adenosine deamination in adult zebrafish brain membranes. Brain Res Bull 86(5–6):385–389. doi: 10.1016/j.brainresbull.2011.08.017 PubMedCrossRefGoogle Scholar
  142. Siebel AM, Piato AL, Schaefer IC, Nery LR, Bogo MR, Bonan CD (2013) Antiepileptic drugs prevent changes in adenosine deamination during acute seizure episodes in adult zebrafish. Pharmacol Biochem Behav 104:20–26. doi: 10.1016/j.pbb.2012.12.021 PubMedCrossRefGoogle Scholar
  143. Simard-Tremblay E, Berry P, Owens A, Cook WB, Sittner HR, Mazzanti M, Huber J, Warner M, Shurtleff H, Saneto RP (2015) High-fat diets and seizure control in myoclonic-astatic epilepsy: a single center’s experience. Seizure 25:184–186. doi: 10.1016/j.seizure.2014.10.009 PubMedCrossRefGoogle Scholar
  144. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295(2):E242–E253. doi: 10.1152/ajpendo.90388.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Skolnick P, Syapin PJ, Paugh BA, Moncada V, Marangos PJ, Paul SM (1979) Inosine, an endogenous ligand of the brain benzodiazepine receptor, antagonizes pentylenetetrazole-evoked seizures. Proc Natl Acad Sci U S A 76(3):1515–1518PubMedPubMedCentralCrossRefGoogle Scholar
  146. Sokoloff L (1973) Metabolism of ketone bodies by the brain. Annu Rev Med 24:271–280. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  147. Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC (2010) The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab 7(1):1–11. doi: 10.1186/1743-7075-7-74 CrossRefGoogle Scholar
  148. Stafstrom CE, Rho JM (2004) Epilepsy and the ketogenic diet., Nutrition and healthHumana Press, TotowaCrossRefGoogle Scholar
  149. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55(4):576–580. doi: 10.1002/ana.20062 PubMedCrossRefGoogle Scholar
  150. Thiry A, Dogne JM, Supuran CT, Masereel B (2007) Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 7(9):855–864PubMedCrossRefGoogle Scholar
  151. Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) d-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112(6):892–901. doi: 10.1172/jci18797 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Uehara T, Sumiyoshi T, Matsuoka T, Tanaka K, Tsunoda M, Itoh H, Kurachi M (2005) Enhancement of lactate metabolism in the basolateral amygdala by physical and psychological stress: role of benzodiazepine receptors. Brain Res 1065(1–2):86–91. doi: 10.1016/j.brainres.2005.10.035 PubMedCrossRefGoogle Scholar
  153. Valle I, Álvarez-Barrientos A, Arza E, Lamas S, Monsalve M (2005) PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66(3):562–573PubMedCrossRefGoogle Scholar
  154. Vanderperre B, Herzig S, Krznar P, Hörl M, Ammar Z, Montessuit S, Pierredon S, Zamboni N, Martinou J-C (2016) Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet. PLoS Genet 12(5):e1006056. doi: 10.1371/journal.pgen.1006056 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vijay N, Morris ME (2014) Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des 20(10):1487–1498PubMedPubMedCentralCrossRefGoogle Scholar
  156. Vilas GL, Johnson DE, Freund P, Casey JR (2009) Characterization of an epilepsy-associated variant of the human Cl/HCO3(−) exchanger AE3. Am J Physiol Cell Physiol 297(3):C526–C536. doi: 10.1152/ajpcell.00572.2008 PubMedCrossRefGoogle Scholar
  157. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 111(3):960–965. doi: 10.1073/pnas.1317400111 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Metabolism of lactate in cultured GABAergic neurons studied by 13C nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 18(1):109–117. doi: 10.1097/00004647-199801000-00011 PubMedCrossRefGoogle Scholar
  159. Wilson L, Yang Q, Szustakowski JD, Gullicksen PS, Halse R (2007) Pyruvate induces mitochondrial biogenesis by a PGC-1 α-independent mechanism. Am J Physiol Cell Physiol 292(5):C1599–C1605PubMedCrossRefGoogle Scholar
  160. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X PubMedCrossRefGoogle Scholar
  161. Wu GY, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492PubMedGoogle Scholar
  162. Wu G (2013) Amino acids: biochemistry and nutrition. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  163. Wu GY (2016) Dietary protein intake and human health. Food Funct 7(3):1251–1265. doi: 10.1039/c5fo01530h PubMedCrossRefGoogle Scholar
  164. Wu GY, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin YL (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44(4):1107–1113. doi: 10.1007/s00726-012-1444-2 PubMedCrossRefGoogle Scholar
  165. Xu B, Michalski B, Racine RJ, Fahnestock M (2004) The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience 126(3):521–531. doi: 10.1016/j.neuroscience.2004.03.044 PubMedCrossRefGoogle Scholar
  166. Yoboue ED, Augier E, Galinier A, Blancard C, Pinson B, Casteilla L, Rigoulet M, Devin A (2012) cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state. J Biol Chem 287(18):14569–14578. doi: 10.1074/jbc.M111.302786 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A (2014) The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Bba-Bioenergetics 1837(7):1093–1098. doi: 10.1016/j.bbabio.2014.02.023 PubMedCrossRefGoogle Scholar
  168. Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2001) Brain amino acid metabolism and ketosis. J Neurosci Res 66(2):272–281PubMedCrossRefGoogle Scholar
  169. Yudkoff M, Daikhin Y, Horyn O, Nissim I, Nissim I (2008) Ketosis and brain handling of glutamate, glutamine and GABA. Epilepsia 49(Suppl 8):73–75. doi: 10.1111/j.1528-1167.2008.01841.x PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Systems Radiobiology Laboratory, Texas A&M Institute for Preclinical StudiesTexas A&M UniversityCollege StationUSA
  3. 3.Department of BiologyTexas A&M UniversityCollege StationUSA
  4. 4.Department of Animal SciencesTexas A&M UniversityCollege StationUSA
  5. 5.Department of Medical PhysiologyTexas A&M UniversityCollege StationUSA
  6. 6.Departments of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations