Advertisement

Amino Acids

, Volume 48, Issue 11, pp 2605–2617 | Cite as

ATP phosphoribosyltransferase from symbiont Entomomyces delphacidicola invovled in histidine biosynthesis of Nilaparvata lugens (Stål)

  • Pin-Jun Wan
  • Yao-Hua Tang
  • San-Yue Yuan
  • Wei-Xia Wang
  • Feng-Xiang Lai
  • Xiao-Ping YuEmail author
  • Qiang FuEmail author
Original Article

Abstract

Histidine is an essential amino acid assumed to be synthesized by an obligatory yeast-like symbiont (Entomomyces delphacidicola str. NLU) in Nilaparvata lugens, an important rice pest. The adenosine-triphosphate phosphoribosyltransferase (ATP-PRTase) facilities the committed first step of the histidine biosynthesis pathway. In the current study, a putative ATP-PRTase was cloned and verified to be of E. delphacidicola origin (EdePRTase). The expression of the gene was spatial and temporal universal with a profile that matched the distribution of the fungal symbiont. RNA interference aided the knockdown of the EdePRTase-suppressed EdePRTase expression by 32–48 %. Hemolymph histidine level was also reduced followed by significant reduction of adult body weight. However, other performance characters including nymph development, survival, and adult sex ratio were not adversely affected by the knockdown. Furthermore, forced histidine exposure (through injection or feeding) significantly inhibited the EdePRTase mRNA levels at higher concentrations, but significantly increased EdePRTase expression levels at lower concentrations (feeding only). The significance of these findings support that the EdePRTase is from symbiont E. delphacidicola, and its involvement in histidine biosynthesis of N. lugens was discussed. The results provide a better understanding of EdePRTase and the encoded functional ATP-PRTase enzyme regulation in N. lugens and insects in general.

Keywords

ATP Phosphoribosyltransferase Histidine biosynthesis Entomomyces delphacidicola Nilaparvata lugens 

Notes

Acknowledgments

This research was supported by Grants of the National Natural Science Foundation of China (31371939), the National Rice Industrial Technology System (CARS-1-18) and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences.

Compliance with ethical standards

Research involving human participants and/or animals

All animal work was conducted according to relevant national and international guidelines.

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. Aklujkar M (2011) Two ATP phosphoribosyltransferase isozymes of Geobacter sulfurreducens contribute to growth in the presence or absence of histidine and under nitrogen fixation conditions. Can J Microbiol 57(7):547–558. doi: 10.1139/W11-047 PubMedCrossRefGoogle Scholar
  2. Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60(1):44–69PubMedPubMedCentralGoogle Scholar
  3. Bikard D, Patel D, Le Mette C, Giorgi V, Camilleri C, Bennett MJ, Loudet O (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323(5914):623–626. doi: 10.1126/science.1165917 PubMedCrossRefGoogle Scholar
  4. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi: 10.1373/clinchem.2008.112797 PubMedCrossRefGoogle Scholar
  5. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19(6):777–786. doi: 10.1111/j.1365-2583.2010.01038.x PubMedCrossRefGoogle Scholar
  6. Chen YH, Bernal CC, Tan J, Horgan FG, Fitzgerald MA (2011) Planthopper “adaptation” to resistant rice varieties: changes in amino acid composition over time. J Insect Physiol 57(10):1375–1384. doi: 10.1016/j.jinsphys.2011.07.002 PubMedCrossRefGoogle Scholar
  7. Cho Y, Sharma V, Sacchettini JC (2003) Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J Biol Chem 278(10):8333–8339. doi: 10.1074/jbc.M212124200 PubMedCrossRefGoogle Scholar
  8. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. doi: 10.1093/bioinformatics/btr088 PubMedCrossRefGoogle Scholar
  9. Dietrich FS, Mulligan J, Hennessy K, Yelton MA, Allen E, Araujo R, Aviles E, Berno A, Brennan T, Carpenter J, Chen E, Cherry JM, Chung E, Duncan M, Guzman E, Hartzell G, Hunicke-Smith S, Hyman RW, Kayser A, Komp C, Lashkari D, Lew H, Lin D, Mosedale D, Davis RW et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome V. Nature 387(6632 Suppl):78–81PubMedPubMedCentralGoogle Scholar
  10. Dong S, Pang K, Bai X, Yu X, Hao P (2011) Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol 62(4):1133–1138. doi: 10.1007/s00284-010-9830-z PubMedCrossRefGoogle Scholar
  11. Fan H-W, Noda H, Xie H-Q, Suetsugu Y, Zhu Q-H, Zhang C-X (2015) Genomic analysis of an Ascomycete fungus from the rice planthopper reveals how it adapts to an endosymbiotic lifestyle. Genome Biol Evol 7(9):2623–2634. doi: 10.1093/gbe/evv169 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fan H-W, Lu J-B, Ye Y-X, Yu X-P, Zhang C-X (2016) Characteristics of the draft genome of “Candidatus Arsenophonus nilaparvatae”, a facultative endosymbiont of Nilaparvata lugens. Insect Sci. doi: 10.1111/1744-7917.12318 PubMedGoogle Scholar
  13. Fu Q, Zhang Z, Hu C, Lai F (2001a) The effects of high temperature on both yeast-like symbionts and amino acid requirements of Nilaparvata lugens. Kun Chong Xue Bao Acta Entomologica Sinica 44(4):534–540Google Scholar
  14. Fu Q, Zhang Z, Hu C, Lai F, Sun Z (2001b) A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 36(1):111–116CrossRefGoogle Scholar
  15. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7(1):e1001264. doi: 10.1371/journal.pgen.1001264 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Harding MM (2004) The architecture of metal coordination groups in proteins. Acta Crystallogr D Biol Crystallogr 60(Pt 5):849–859. doi: 10.1107/S0907444904004081 PubMedCrossRefGoogle Scholar
  17. Hu J, Xia Y (2015) F -ATP synthase alpha subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis. Pest Manag Sci. doi: 10.1002/ps.4185 Google Scholar
  18. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3):227–235. doi: 10.1016/j.jinsphys.2009.10.004 PubMedCrossRefGoogle Scholar
  19. Ingle RA (2011) Histidine biosynthesis. Arabidopsis Book 9:e0141. doi: 10.1199/tab.0141 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Koslowsky S, Riegler H, Bergmuller E, Zrenner R (2008) Higher biomass accumulation by increasing phosphoribosylpyrophosphate synthetase activity in Arabidopsis thaliana and Nicotiana tabacum. Plant Biotechnol J 6(3):281–294. doi: 10.1111/j.1467-7652.2007.00314.x PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kulis-Horn RK, Persicke M, Kalinowski J (2014) Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 7(1):5–25. doi: 10.1111/1751-7915.12055 PubMedCrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi: 10.1093/bioinformatics/btm404 PubMedCrossRefGoogle Scholar
  23. Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H (2011) RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Manag Sci 67(7):852–859. doi: 10.1002/ps.2124 PubMedCrossRefGoogle Scholar
  24. Li H, Guan R, Guo H, Miao X (2015) New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 38(11):2277–2285. doi: 10.1111/pce.12546 PubMedCrossRefGoogle Scholar
  25. Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40(9):666–671. doi: 10.1016/j.ibmb.2010.06.007 PubMedCrossRefGoogle Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  27. Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ (2004) The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 336(1):131–144. doi: 10.1016/j.jmb.2003.12.020 PubMedCrossRefGoogle Scholar
  28. Meyering-Vos M, Müller A (2007) RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J Insect Physiol 53(8):840–848. doi: 10.1016/j.jinsphys.2007.04.003 PubMedCrossRefGoogle Scholar
  29. Morton DP, Parsons SM (1977) Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine. Arch Biochem Biophys 181(2):643–648PubMedCrossRefGoogle Scholar
  30. Palli SR (2014) RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr Opin Insect Sci 6:1–8. doi: 10.1016/j.cois.2014.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Pang K, Dong SZ, Hou Y, Bian YL, Yang K, Yu XP (2012) Cultivation, identification and quantification of one species of yeast-like symbiotes, Candida, in the rice brown planthopper, Nilaparvata lugens. Insect Sci 19(4):477–484. doi: 10.1111/j.1744-7917.2011.01486.x CrossRefGoogle Scholar
  32. Pedreno S, Pisco JP, Larrouy-Maumus G, Kelly G, de Carvalho LP (2012) Mechanism of feedback allosteric inhibition of ATP phosphoribosyltransferase. Biochemistry 51(40):8027–8038. doi: 10.1021/bi300808b PubMedPubMedCentralCrossRefGoogle Scholar
  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi: 10.1093/nar/29.9.e45 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Piszkiewicz D, Tilley BE, Rand-Meir T, Parsons SM (1979) Amino acid sequence of ATP phosphoribosyltransferase of Salmonella typhimurium. Proc Natl Acad Sci USA 76(4):1589–1592PubMedPubMedCentralCrossRefGoogle Scholar
  35. Polgar L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62(19–20):2161–2172. doi: 10.1007/s00018-005-5160-x PubMedCrossRefGoogle Scholar
  36. Rajani MS, Aniruddha Raychaudhuri MMT, Duff SMG (2013) Histidine biosynthesis pathway: a test case for engineering plant metabolism and growth. Plant Physiol 5:51–62Google Scholar
  37. Rebek J (1990) On the structure of histidine and its role in enzyme active sites. Struct Chem 1:129–131CrossRefGoogle Scholar
  38. Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39(1):1–10. doi: 10.1016/j.ibmb.2008.08.008 PubMedCrossRefGoogle Scholar
  39. Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. doi: 10.1093/bioinformatics/btu033 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Stepansky A, Leustek T (2006) Histidine biosynthesis in plants. Amino Acids 30(2):127–142. doi: 10.1007/s00726-005-0247-0 PubMedCrossRefGoogle Scholar
  41. Tang Q-Y, Zhang C-X (2013) Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci 20(2):254–260. doi: 10.1111/j.1744-7917.2012.01519.x PubMedCrossRefGoogle Scholar
  42. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):1–12. doi: 10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  43. Wan PJ, Yang L, Wang WX, Fan JM, Fu Q, Li GQ (2014) Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), based on the transcriptome data. Insect Mol Biol 23(2):152–164. doi: 10.1111/imb.12069 PubMedCrossRefGoogle Scholar
  44. Wan P-J, Fu K-Y, Lü F-G, Guo W-C, Li G-Q (2015a) Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata. Amino Acids 47(7):1445–1454. doi: 10.1007/s00726-015-1978-1 PubMedCrossRefGoogle Scholar
  45. Wan P-J, Yang L, Yuan S-Y, Tang Y-H, Fu Q, Li G-Q (2015b) RNA interference-aided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Bull Entomol Res 105(4):390–398. doi: 10.1017/S0007485315000231 PubMedCrossRefGoogle Scholar
  46. Wan P-J, Yuan S-Y, Tang Y-H, Li K-L, Yang L, Fu Q, Li G-Q (2015c) Pathways of amino acid degradation in Nilaparvata lugens (Stål) with special reference to lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). PLoS One 10(5):e0127789. doi: 10.1371/journal.pone.0127789 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wang ZM, Luecke H, Yao NH, Quiocho FA (1997) A low energy short hydrogen bond in very high resolution structures of protein receptor-phosphate complexes. Nat Struct Biol 4(10):840Google Scholar
  48. Wilkinson TL, Ishikawa H (2001) On the functional significance of symbiotic microorganisms in the Homoptera: a comparative study of Acyrthosiphon pisum and Nilaparvata lugens. Physiol Entomol 26(1):86–93. doi: 10.1046/j.1365-3032.2001.00214.x CrossRefGoogle Scholar
  49. Xue J, Zhou X, Zhang C-X, Yu L-L, Fan H-W, Wang Z, Xu H-J, Xi Y, Zhu Z-R, Zhou W-W, Pan P-L, Li B-L, Colbourne J, Noda H, Suetsugu Y, Kobayashi T, Zheng Y, Liu S, Zhang R, Liu Y, Luo Y-D, Fang D-M, Chen Y, Zhan D-L, Lv X-D, Cai Y, Wang Z-B, Huang H-J, Cheng R-L, Zhang X-C (2014) Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol 15(12):521PubMedPubMedCentralCrossRefGoogle Scholar
  50. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10(10):1171–1180. doi: 10.7150/ijbs.9598 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Yuan M, Lu Y, Zhu X, Wan H, Shakeel M, Zhan S, Jin BR, Li J (2014) Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PLoS One 9(1):e86503. doi: 10.1371/journal.pone.0086503 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6(5):e20504. doi: 10.1371/journal.pone.0020504 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Zhang Y, Morar M, Ealick SE (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65(23):3699–3724. doi: 10.1007/s00018-008-8295-8 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Zhang Y, Shang X, Deng A, Chai X, Lai S, Zhang G, Wen T (2012) Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie 94(3):829–838. doi: 10.1016/j.biochi.2011.11.015 PubMedCrossRefGoogle Scholar
  55. Zhang Y-X, Ge L-Q, Jiang Y-P, Lu X-L, Li X, Stanley D, Song Q-S, Wu J-C (2015) RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Sci Rep 5:15360. doi: 10.1038/srep15360 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Pin-Jun Wan
    • 1
  • Yao-Hua Tang
    • 1
    • 2
  • San-Yue Yuan
    • 1
  • Wei-Xia Wang
    • 1
  • Feng-Xiang Lai
    • 1
  • Xiao-Ping Yu
    • 2
    Email author
  • Qiang Fu
    • 1
    Email author
  1. 1.State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life SciencesChina Jiliang UniversityHangzhouChina

Personalised recommendations