Amino Acids

, Volume 48, Issue 12, pp 2717–2729 | Cite as

Atypical cleavage of protonated N-fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments

  • Toufik Taalibi Boukerche
  • Sandra Alves
  • Pauline Le Faouder
  • Anna Warnet
  • Justine Bertrand-Michel
  • Mohamed Bouchekara
  • Mohammed Belbachir
  • Jean-Claude Tabet
Original Article


Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA(*D) and LAA(*E)). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA(*D/*E)+H)–C2H5OH]+ product ions dissociate via distinct pathways in sequential MS3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion–dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA(*D), whereas LAA(*E) leads to the [*E+H–H2O]+ anhydride. The former releases ammonia to provide acylium, which gives the C n H(2n−1) and C n H(2n−3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.


N-fatty-acyl amino-acid Regioselectivity Ion–dipole ESI/MSn 



Thanks to the University Hassiba Benbouali, Chlef, Algeria and the head of the Faculty of Science (Professor Abdelkader Ali Benamara) for financing the internship and Dr. B. Floriant (INSA, Toulouse, France) for NMR analyses. Thanks to Corinne Aubert for allowing T. Taalabi to come to IPCM of the University Pierre and Marie Curie.

Compliance with ethical standards

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.


  1. Afonso C, Cole RB, Tabet JC (2010) Dissociation of even-electron ions. In: Cole RB (ed) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, 2nd edn. Wiley, pp 631–682.Google Scholar
  2. Alkorta I, Abboud JLM, Quintanilla E, Dávalos JZ (2003) A theoretical study of (old and new) non-classical carbocations derived from cyclic saturated hydrocarbons. J Phys Org Chem 16:546–554CrossRefGoogle Scholar
  3. An X, Eiceman GA, Rodriguez JE, Stone JA (2011) Gas phase fragmentation of protonated esters in air at ambient pressure through ion heating by electric field in differential mobility spectrome-try. Int J Mass Spectrom 303:181–190CrossRefGoogle Scholar
  4. Arafat ES, Trimbleb JW, Andersen RN, Dass C, Desiderio DM (1989) Identification of fatty acid amides in human plasma. Life Sci 45:1679–1687CrossRefPubMedGoogle Scholar
  5. Asselineau C, Asselineau G (1984) Fatty acids and complex lipids. In: Odham G et al (eds) Gas chromatography mass spectrometry applications in microbiology. Plenum Press, New York, pp 57–103CrossRefGoogle Scholar
  6. Bab I, Smoum R, Bradshaw H, Mechoulam R (2011) Skeletal lipidomics: regulation of bone metabolism by fatty acid amide family. Br J Pharmacol 163(7):1441–1446CrossRefPubMedPubMedCentralGoogle Scholar
  7. Batrakov SG, Nikitin DI, Mosezhnyi AE, Ruzhitsky AO (1999) A glycine-containing phosphorus-free lipoaminoacid from the gram-negative marine bacterium Cyclobacterium marinus WH. Chem Phys Lipids 99:139–143CrossRefGoogle Scholar
  8. Bell AJ, Despeyroux D, Murrell J, Watts P (1997) Fragmentation and reactions of organo-phosphate ions produced by electrospray ionization. Int J Mass Spectrom Ion Process 165–166:533–550CrossRefGoogle Scholar
  9. Bennaceur C, Afonso C, Alves S, Bossée A, Tabet JC (2013) Instrumental dependent dissociations of n-propyl/isopropyl phosphonate isomers: evaluation of resonant and non-resonant vibrational activations. J Am Soc Mass Spectrom 24(8):1260–1270CrossRefPubMedGoogle Scholar
  10. Biemann K (1986) Mass spectrometric: methods for protein sequencing. Anal Chem 58(13):1288A–1300ACrossRefPubMedGoogle Scholar
  11. Boger DL, Sato H, Lerner AE, Guan X, Gilula NB (1999) Arachidonic acid amide inhibitors of gap junction cell–cell communication. Bioorg Med Chem Lett 9:1151–1154CrossRefPubMedGoogle Scholar
  12. Bordes R, Holmberg K (2009) Amino acid-based surfactants. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, 2nd edn. CRC Press, Taylor & Francis group, pp 1–17Google Scholar
  13. Bordes R, Holmberg K (2011) Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloids Surf A Physicochem Eng Asp 391(1–3):32–41CrossRefGoogle Scholar
  14. Bordes R, Tropsch J, Holmberg K (2010) Adsorption of dianionic surfactants based on amino acids at different surfaces studied by QCM-D and SPR. Langmuir 26(13):10935–10942CrossRefPubMedGoogle Scholar
  15. Bowen RD, Williams DH (1981) Products of low potential energy in mass spectra as a consequence of ion–dipole attractions. The case of isobutyl alcohol. J Chem Soc Chem Comm 16:836–838CrossRefGoogle Scholar
  16. Brito R, Silva S, Fernandes R, Marques E (2011) Enhanced interfacial properties of novel amino acid-derived surfactants: effects of headgroup chemistry and of alkyl chain length and unsaturation. Colloids Surf B 86:65–70CrossRefGoogle Scholar
  17. Bythell BJ, Suhai S, Somogyi A, Proton-Driven Paizs B (2009) Amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J Am Chem Soc 131(39):14057–14065CrossRefPubMedGoogle Scholar
  18. Cartwright NJ (1955) Serratamic acid, a derivative of l-serine produced by organisms of the Serratia group. Biochem J 60:238–242CrossRefPubMedPubMedCentralGoogle Scholar
  19. Castro-Perez J, Roddy TP, Nibbering NMM, Shah V, McLaren DG, Previs S, Attygalle AB, Herath K, Chen Z, Wang S, Mitnaul L, Hubbard BK, Vreeken RJ, Johns DG, Hankemeier T (2011) Localization of fatty acyl and double bond positions in phosphatidyl-cholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom 22:1552–1567CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cataldi T, Bianco G, Palazzo L, Quaranta V (2007) Occurrence of N-acyl-l-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography–mass spectrome-try. Anal Biochem 361:226–235CrossRefPubMedGoogle Scholar
  21. Colsch B, Seyer A, Boudah S, Junot C (2015) Lipidomic analysis of cerebrospinal fluid by mass spectrometry-based methods. J Inherit Metab Dis 38:53–64CrossRefPubMedGoogle Scholar
  22. Connor M, Vaughan CW, Vandenberg RJ (2010) N-Acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets. Br J Pharmacol 160(8):1857–1871CrossRefPubMedPubMedCentralGoogle Scholar
  23. Contijoch Mestres A, Rodriguez Martinez FJ, Seguer Bonaventura J (2001) Process for the preparation of amino acid amide ester cationic surfactants. PCT Int Appl WO 2001094292(A1):20011213Google Scholar
  24. Debrauwer L, Paris A, Rao D, Fournier F, Tabet JC (1992) Mass spectrometric studies on 17β-estradiol-17-fatty acid esters: evidence for the formation of anion–dipole intermediates. Org Mass Spectrom 27(6):709–719CrossRefGoogle Scholar
  25. Devane WA, Hanus L, Breuer A, Pertwee R, Stevenson L et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMedGoogle Scholar
  26. Divito EB, Davic AP, Johnson ME, Cascio M (2012) Electrospray ionization and collision induced dissociation mass spectrometry of primary fatty acid amides. Anal Chem 84:2388–2394CrossRefPubMedGoogle Scholar
  27. Dongre AR, Somogyi A, Wysocki (1996) VH Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom 31(4):339–350CrossRefPubMedGoogle Scholar
  28. Fournier F, Salles C, Tabet JC, Debrauwer L, Rao D et al (1990) Tandem mass spectrometric investigation on 17β-estradiol palmitate in negative ion chemical ionization. Anal Chim Acta 241(2):265–272CrossRefGoogle Scholar
  29. Fournier F, Remaud B, Blasco T, Tabet JC (1993) Ion–dipole complex formation from deprotonated phenol fatty acid esters evidenced by using gas-phase labeling combined with tandem mass spectrometry. J Am Soc Mass Spectrom 4(4):343–351CrossRefPubMedGoogle Scholar
  30. Francis GJ, Milligan DB, McEwan MJ (2007) Gas-phase reactions and rearrangements of alkyl esters with H3O+, NO+, and O2: a selected ion flow tube study. J Phys Chem A 111:9670–9679CrossRefPubMedGoogle Scholar
  31. Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J (2015) A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr B 976–977:6–18CrossRefGoogle Scholar
  32. Gibbons WA, Hughes RA, Charalambous M, Christodoulou M, Szeto A et al (1990) Synthesis, resolution and structural elucidation of lipidic amino acids and their homo- and hetero-oligomers. Liebigs Ann Chem 12:1175–1183CrossRefGoogle Scholar
  33. Gross ML (1992) Charge-remote fragmentations: method, mechanism and applications. Int J Mass Spectrom Ion Process 118(119):137–165CrossRefGoogle Scholar
  34. Heutrich W, Keppler H, Hintzmann K (1936) Detergents, wetting, dispersing and leveling agents. German Patent 635522, 18 SeptemberGoogle Scholar
  35. Huang S, Bisogno T, Petros T, Chang S, Zavitsanos P (2001) Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem 276–46:42639–42644CrossRefGoogle Scholar
  36. Ichou F, Schwarzenberg A, Lesage D, Alves S, Junot C et al (2014) Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. J Mass Spectrom 49(6):498–508CrossRefPubMedGoogle Scholar
  37. Infante MR, Pinazo A, Seguer J (1997) Non-conventional surfactants from amino acids and glycolipids: structure, preparation and properties. Colloids Surf A 123–124:49–69CrossRefGoogle Scholar
  38. Infante MR, Perez L, Pinazo A, Clapes P, Moran MC (2003) Amino acid-based surfactants. In: Holmberg K (ed) Novel surfactants: preparation, applications and biodegradability, 2nd edn. Marcel Dekker, New York, pp 193–216Google Scholar
  39. Infante MR, Miguel M, Lindman B (2006) Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based cationic surfactant systems. Langmuir 22:5588–5596CrossRefGoogle Scholar
  40. Jungermann E, Gerecht JE, Krems IJ (1956) The preparation of long chain N-acylamino acids. J Am Chem Soc 78:172–174CrossRefGoogle Scholar
  41. Kawai Y, Yano I, Kaneda K (1988) Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen flavobacterium. Eur J Biochem 171:73–80CrossRefPubMedGoogle Scholar
  42. Kimura A, Otsuka H (1969) Biological activities of siolipin (ester of lipoamino acid). Agric Biol Chem 33(9):1291–1294Google Scholar
  43. Kyadarkunte A, Patole M, Pokharkar V (2014) In vitro cytotoxicity and phototoxicity assessment of acylglutamate surfactants using a human keratinocyte cell line. Cosmetics 1(3):159–170CrossRefGoogle Scholar
  44. Lavanchy A, Houriet R, Gaumann T (1979) The mass spectrometric fragmentation of n-alkanes. Org Mass Spectrom 14:79–85CrossRefGoogle Scholar
  45. Lias SG, Bartness JE, Liebman JF, Homes JL, Levin RD et al (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data Suppl 17(1):861Google Scholar
  46. Longevialle P, Botter R (1980) Evidence for intramolecular interaction between ionic and neutral fragments in the mass spectrometer. J Chem Soc Chem Commun 17:823–825CrossRefGoogle Scholar
  47. Louris JN, Wright LG, Cooks RG, Schoen AE (1985) New scan modes accessed with a hybrid mass spectrometer. Anal Chem 57(14):2918–2924CrossRefGoogle Scholar
  48. Mandelbaum A, Mueller DR, Richter WJ, Vidavsky I, Weisz A (1989) Highly specific alcohol elimination from MH of isomeric methyl ethyl butylmaleates and butylsuccinates in low energy CID. Org Mass Spectrom 24:857–859CrossRefGoogle Scholar
  49. Mandelbaum A, Mueller DR, Richter WJ, Vidavsky L (1990) Intramolecular hydrogen deuterium exchange in isomeric methyl ethyl esters of phenylmaleic, fumaric and succinic acids under chemical ionization: low energy CID study and geometrical requirements of the exchange. Int J Mass Spectrom Ion Process 100:565–577CrossRefGoogle Scholar
  50. Mohanty A, Dey J (2007) Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l aminoacidates in water. Langmuir 23:1033–1040CrossRefPubMedGoogle Scholar
  51. Morris H, Panico M, Barber M, Bordoli R, Sedgwick R et al (1981) Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem Biophys Res Com 101–2:623–631CrossRefGoogle Scholar
  52. Pal A, Patra T, Dey J (2013) Physical gelation of organic liquids by achiral amino acid based amphiphilic gelators. Chem Phys Lett 556:245–250CrossRefGoogle Scholar
  53. Peypoux F, Laprevote O, Pagadoy M, Wallach J (2004) N-acyl derivatives of Asn, new bacterial N-acyl d-amino acids with surfactant activity. Amino Acids 26:209–214CrossRefPubMedGoogle Scholar
  54. Ricks AM, Douberly GE, Schleyer P, Duncan MA (2009) Infrared spectroscopy of protonated ethylene: the nature of proton binding in the non-classical structure. Chem Phys Letters 480:17–20CrossRefGoogle Scholar
  55. Rosa M, Moran M, Miguel M, Lindman B (2007) The association of DNA and stable cationic amino acid-based vesicles. Colloids Surf A Physicochem Eng Asp 301:361–375CrossRefGoogle Scholar
  56. Schwarz H, Stahl D (1980) Unimolecular water loss from protonated alcohols in the gas phase: the effect of ion/dipole interactions on the isomerization of incipient carbocation. Int J Mass Spectrom Ion Phys 36:285–289CrossRefGoogle Scholar
  57. Schwarzenberg A, Ichou F, Cole RB, Machuron-Mandard X, Junot C et al (2013) Identification tree based on fragmentation rules for structure elucidation of organophosphorus esters by electrospray mass spectrometry. J Mass Spectrom 48(5):576–586CrossRefPubMedGoogle Scholar
  58. Smoum R, Bar A, Tan B, Milman G, Attar-Namdar M et al (2010) Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. PNAS 107(41):17710–17715CrossRefPubMedPubMedCentralGoogle Scholar
  59. Steiner V, Daoust-Maleval I, Tabet JC (2000) Study of gas-phase reactivity of positive and negative even-electron ions prepared from diethylmethyl phosphonate ester in an external chemical ionization source of orthogonal tandem quadrupole/ion trap instrument. Int J Mass Spectrom 195–196:121–138CrossRefGoogle Scholar
  60. Takehara M (1989) Properties and applications of amino acid based surfactants. Colloids Surf 38:149–167CrossRefGoogle Scholar
  61. Tamanna S, Mitchell EJ (2006) Sample preparation and gas chromatography of primary fatty acid amides. J Chromatogr A 1101:278–285CrossRefGoogle Scholar
  62. Tan B, O’Dell DK, Yu W, Monn MF, Hughes HV et al (2010) Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res 51(1):112–119CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tu YP, Harrison A (1998) Fragmentation of protonated amides through intermediate ion-neutral complexes: neighboring group participation. J Am Soc Mass Spectrom 9(5):454–462CrossRefGoogle Scholar
  64. Vazquez JFT, Rueda JM, Mallia VA, Weiss RG (2010) Relationship between molecular structure and thermo-mechanical properties of Candelilla wax and amides derived from (R)-12-hydroxystearic acid as gelators of safflower oil. Food Biophys 5:193–202CrossRefGoogle Scholar
  65. Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88(20):445–4459Google Scholar
  66. Yoshida R, Sato S, Takizawa K, Maeda I (1975) Studies of detergents derived from amino acids. I. Detergencies of sodium N-acyl-l-glutamates. JOCS 24:595–599Google Scholar
  67. Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M et al (2007) Fatty acid amides, previously identified in caterpillars, found in the Cricket Teleogryllus taiwanemma and Fruit Fly Drosophila melanogaster larvae. J Chem Ecol 33:1376–1381CrossRefPubMedGoogle Scholar
  68. Zhang X, Ferguson-Miller S, Reid G (2009) Characterization of ornithine and glutamine lipids extracted from cell membranes of Rhodobacter sphaeroides. J Am Soc Mass Spectrom 20:198–212CrossRefPubMedGoogle Scholar
  69. Zhang L, Li H, Ha C, Suh H, Kim I (2010) Fabrication of nanotubules and microspheres from the self-assembly of amphiphilic monochain stearic acid derivatives. Langmuir 26(23):17890–17895CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Toufik Taalibi Boukerche
    • 1
    • 2
    • 3
  • Sandra Alves
    • 1
  • Pauline Le Faouder
    • 3
  • Anna Warnet
    • 1
    • 4
  • Justine Bertrand-Michel
    • 3
  • Mohamed Bouchekara
    • 5
  • Mohammed Belbachir
    • 2
  • Jean-Claude Tabet
    • 1
    • 4
  1. 1.IPCM UMR-CNRS 8232University Paris VI (UPMC)ParisFrance
  2. 2.Université Oran 1 Ahmed Ben-BallaOranAlgeria
  3. 3.MetaToul-Lipidomic, MetaboHUB, I2MC INSERM U1048ToulouseFrance
  4. 4.CEA, iBiTec-S, SPI, LEMM, MetaboHUBGif Sur YvetteFrance
  5. 5.LCOMM Université de Mustafa StambouliMascaraAlgeria

Personalised recommendations