Skip to main content
Log in

Creatine supplementation and glycemic control: a systematic review

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The focus of this review is the effects of creatine supplementation with or without exercise on glucose metabolism. A comprehensive examination of the past 16 years of study within the field provided a distillation of key data. Both in animal and human studies, creatine supplementation together with exercise training demonstrated greater beneficial effects on glucose metabolism; creatine supplementation itself demonstrated positive results in only a few of the studies. In the animal studies, the effects of creatine supplementation on glucose metabolism were even more distinct, and caution is needed in extrapolating these data to different species, especially to humans. Regarding human studies, considering the samples characteristics, the findings cannot be extrapolated to patients who have poorer glycemic control, are older, are on a different pharmacological treatment (e.g., exogenous insulin therapy) or are physically inactive. Thus, creatine supplementation is a possible nutritional therapy adjuvant with hypoglycemic effects, particularly when used in conjunction with exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsever RN, Georg RH, Sussman KE (1970) Stimulation of insulin secretion by guanidinoacetic acid and other guanidine derivatives. Endocrinology 86:332–336

    Article  CAS  PubMed  Google Scholar 

  • Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH Jr, Gualano B (2012) Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-α? Amino Acids 43:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Araújo MB, Junior RCV, Moura LP et al (2013) Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats. Motriz 19:709–716

    Google Scholar 

  • Bolea S, Pertusa JA, Martín F, Sanchez-Andrés JV, Soria B (1997) Regulation of pancreatic beta-cell electrical activity and insulin release by physiological amino acid concentrations. Pflugers Arch 433:699–704

    Article  CAS  PubMed  Google Scholar 

  • Bouzakri K, Karlsson HK, Vestergaard H, Madsbad S, Christiansen E, Zierath JR (2006) IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients. Diabetes 55:785–791

    Article  CAS  PubMed  Google Scholar 

  • Branch JD (2003) Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab 13:198–226

    Article  CAS  PubMed  Google Scholar 

  • Brannon TA, Adams GR, Conniff CL, Baldwin KM (1997) Effects of creatine loading and training on running performance and biochemical properties of rat skeletal muscle. Med Sci Sports Exerc 29:489–495

    Article  CAS  PubMed  Google Scholar 

  • Ceddia RB, Sweeney G (2004) Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J Physiol 555:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA (2009) Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers. doi:10.1038/nrdp.2015.19

    PubMed  Google Scholar 

  • Derave W, Eijnde BO, Verbessem P et al (2003) Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J Appl Physiol 94:1910–1916

    Article  CAS  PubMed  Google Scholar 

  • Devries MC, Phillips SM (2014) Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc 46:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Eijnde BO, Richter EA, Henquin JC, Kiens B, Hespel P (2001) Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand 171:169–176

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Jenkins BG et al (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397

    CAS  PubMed  Google Scholar 

  • Freire TO, Gualano B, Leme MD, Polacow VO, Lancha AH Jr (2008) Effects of creatine supplementation on glucose uptake in rats submitted to exercise training. Rev Bras Med Esporte 14:431–435

    Article  Google Scholar 

  • Garcia-Roves PM, Han DH, Song Z, Jones TE, Hucker KA, Holloszy JO (2003) Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol Endocrinol Metab 285:E729–E736

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Novaes RB, Artioli GG et al (2008) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH (2010) Exploring the therapeutic role of creatine supplementation. Amino Acids 38:31–44

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, de Salles PV, Roschel H et al (2011) Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc 43:770–778

    Article  CAS  PubMed  Google Scholar 

  • Guzun R, Timohhina N, Tepp K et al (2011) Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 40:1333–1348

    Article  CAS  PubMed  Google Scholar 

  • Harris R (2011) Creatine in health, medicine and sport: an introduction to a meeting held at Downing College, University of Cambridge, July 2010. Amino Acids 40:1267–1270

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Söderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83:367–374

    Article  CAS  Google Scholar 

  • Hiratani K, Haruta T, Tani A, Kawahara J, Usui I, Kobayashi M (2005) Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem Biophys Res Commun 335:836–842

    Article  CAS  PubMed  Google Scholar 

  • Holemans K, Caluwaerts S, Poston L, Van Assche FA (2004) Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol 190:858–865

    Article  PubMed  Google Scholar 

  • IDF (2013) International Diabetes Federation: Diabetes Atlas. https://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Accessed 01 Dec 2015

  • Ju JS, Smith JL, Oppelt PJ, Fisher JS (2005) Creatine feeding increases GLUT4 expression in rat skeletal muscle. Am J Physiol Endocrinol Metab 288:E347–E352

    Article  CAS  PubMed  Google Scholar 

  • Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  CAS  PubMed  Google Scholar 

  • Marco J, Calle C, Hedo JA, Villanueva ML (1976) Glucagon-releasing activity of guanidine compounds in mouse pancreatic islets. FEBS Lett 64:52–54

    Article  CAS  PubMed  Google Scholar 

  • McMillen J, Donovan CM, Messer JI, Willis WT (2001) Energetic driving forces are maintained in resting rat skeletal muscle after dietary creatine supplementation. J Appl Physiol 90:62–66

    CAS  PubMed  Google Scholar 

  • Nakatani A, Han DH, Hansen PA et al (1997) Effect of endurance exercise training on muscle glycogen supercompensation in rats. J Appl Physiol 82:711–715

    CAS  PubMed  Google Scholar 

  • Newman JE, Hargreaves M, Garnham A, Snow RJ (2003) Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exerc 35:69–74

    Article  CAS  PubMed  Google Scholar 

  • Nicastro H, Gualano B, de Moraes WM et al (2012) Effects of creatine supplementation on muscle wasting and glucose homeostasis in rats treated with dexamethasone. Amino Acids 42:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Op’t Eijnde B, Ursø B, Richter EA, Greenhaff PL, Hespel P (2001) Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes 50:18–23

    Article  Google Scholar 

  • Op’t Eijnde B, Jijakli H, Hespel P, Malaisse WJ (2006) Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. Int J Mol Med 2006(17):1077–1084

    Google Scholar 

  • Pan XR, Li GW, Hu YH et al (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20:537–544

    Article  CAS  PubMed  Google Scholar 

  • Pedersen O, Bak JF, Andersen PH et al (1990) Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39:865–870

    Article  CAS  PubMed  Google Scholar 

  • Petry CJ, Ozanne SE, Wang CL, Hales CN (1997) Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci 93:147–152

    Article  CAS  PubMed  Google Scholar 

  • Pinto CL, Botelho PB, Carneiro JA, Mota JF (2016) Impact of creatine supplementation in combination with resistance training on lean mass in the elderly. J Cachexia Sarcopenia Muscle. doi:10.1002/jcsm.12094

    PubMed  PubMed Central  Google Scholar 

  • Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17:1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran A, Snehalatha C, Mary S et al (2006) The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49:289–297

    Article  CAS  PubMed  Google Scholar 

  • Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO (1994) Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 269:14396–14401

    CAS  Google Scholar 

  • Rooney K, Bryson J, Phuyal J, Denyer G, Caterson I, Thompson C (2002) Creatine supplementation alters insulin secretion and glucose homeostasis in vivo. Metabolism 51:518–522

    Article  CAS  PubMed  Google Scholar 

  • Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA (2008) Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 32:219–228

    Article  CAS  PubMed  Google Scholar 

  • Souza RA, Santos RM, Osório RAL et al (2006) Influence of the short and long term supplementation of creatine on the plasmatic concentrations of glucose and lactate in Wistar rats. Rev Bras Med Esporte 12:361–365

    Google Scholar 

  • Stacey RS (1933) The effect on the blood-sugar and blood-phosphate of ingested creatine. Biochem J 27:690–692

    Article  CAS  PubMed Central  Google Scholar 

  • Tarnopolsky MA, Bourgeois JM, Snow R et al (2003) Histological assessment of intermediate- and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol Regul Integr Comp Physiol 285:R762–R769

    Article  CAS  PubMed  Google Scholar 

  • Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    Article  CAS  PubMed  Google Scholar 

  • Vaisy M, Szlufcik K, De Bock K et al (2011) Exercise-induced, but not creatine-induced, decrease in intramyocellular lipid content improves insulin sensitivity in rats. J Nutr Biochem 22:1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72:96–105

    PubMed  Google Scholar 

  • Van Loon LJ, Murphy R, Oosterlaar AM et al (2004) Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci 106:99–106

    Article  PubMed  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt KK, Garnham AP, Snow RJ (2004) Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation. Int J Sport Nutr Exerc Metab 14:517–531

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Young JC, Young RE (2002) The effect of creatine supplementation on glucose uptake in rat skeletal muscle. Life Sci 71:1731–1737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) for the scholarship to Camila Lemos Pinto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Felipe Mota.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, C.L., Botelho, P.B., Pimentel, G.D. et al. Creatine supplementation and glycemic control: a systematic review. Amino Acids 48, 2103–2129 (2016). https://doi.org/10.1007/s00726-016-2277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2277-1

Keywords

Navigation