Advertisement

Amino Acids

, Volume 48, Issue 11, pp 2501–2518 | Cite as

Isolation and characterization of autoantibodies against human cystatin C

  • Martyna Prądzińska
  • Izabela Behrendt
  • Marta Spodzieja
  • Aleksandra S. Kołodziejczyk
  • Sylwia Rodziewicz-Motowidło
  • Aneta Szymańska
  • Susanna L. Lundström
  • Roman A. Zubarev
  • Katarzyna Macur
  • Paulina CzaplewskaEmail author
Original Article

Abstract

Hereditary cystatin C amyloid angiopathy (HCCAA) is a severe neurodegenerative disorder related to the point mutation in cystatin C gene resulting in human cystatin C (hCC) L68Q variant. One of the potential immunotherapeutic approaches to HCCAA treatment is based on naturally occurring antibodies against cystatin C. A recent growing interest in autoantibodies, especially in the context of neurodegenerative diseases, emerges from their potential use as valuable diagnostic markers and for controlling protein aggregation. In this work, we present characteristics of natural anti-hCC antibodies isolated from the IgG fraction of human serum by affinity chromatography. The electrophoresis (1-D and 2-D) results demonstrated that the isolated NAbs are a polyclonal mixture, but their electrophoretic properties did not allow to classify the new autoantibodies to any particular type of IgG. The Fc-glycan status of the studied autoantibodies was assessed using mass spectrometry analysis. For the isolated NAbs, the epitopic fragments in hCC sequence were identified by MS-assisted proteolytic excision of the immune complex and compared with the ones predicted theoretically. The knowledge of hCC fragments binding to NAbs and other ligands may contribute to the search for new diagnostic methods for amyloidosis of different types and the search for their treatment.

Keywords

Autoantibodies Human cystatin C Mass spectrometry Epitope 

Notes

Acknowledgments

The project was financially supported by National Science Center, based on the decision no DEC-2012/05/E/ST5/03796. We would like to acknowledge DS 530-8440-D379-13 and MOBI4Health EU project which allowed us to use high quality mass spectrometers. MOBI4Health has received funding from the European Union’s Seventh Framework Program for research, technological development and demonstration under Grant Agreement No. 316094 and from the Ministry of Science and Higher Education.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2016_2271_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
726_2016_2271_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 kb)
726_2016_2271_MOESM3_ESM.docx (796 kb)
Supplementary material 3 (DOCX 796 kb)

References

  1. Aghera N, Udgaonkar JB (2011) Heterologous expression, purification and characterization of heterodimeric monellin. Protein Expr Purif 76:248–253. doi: 10.1016/j.pep.2010.11.002 CrossRefPubMedGoogle Scholar
  2. Barnidge DR, Dasari S, Botz CM et al (2014) Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res 13:1419–1427. doi: 10.1021/pr400985k CrossRefPubMedGoogle Scholar
  3. Bennett MJ, Sawaya MR, Eisenberg D (2006) Deposition diseases and 3D domain swapping. Structure 14:811–824. doi: 10.1016/j.str.2006.03.011 CrossRefPubMedGoogle Scholar
  4. Crisostomo AC, Dang L, Digambaranath JL, Klaver AC, Loeffler DA, Payne JJ, Smith LM, Yokom AL, Finke JM (2015) Kinetic analysis of IgG antibodies to beta-amyloid oligom ers with surface plasmon resonance. Anal Biochem 481:43–54. doi: 10.1016/j.ab.2015.03.032 CrossRefPubMedGoogle Scholar
  5. Dodel R, Balakrishnan K, Keyvani K et al (2011) Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci 31:5847–5854. doi: 10.1523/JNEUROSCI.4401-10.2011 CrossRefPubMedGoogle Scholar
  6. Ferraro S, Marano G, Biganzoli EM et al (2011) Prognostic value of cystatin C in acute coronary syndromes: enhancer of atherosclerosis and promising therapeutic target. Clin Chem Lab Med 49:1397–1404. doi: 10.1515/CCLM.2011.607 CrossRefPubMedGoogle Scholar
  7. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214CrossRefPubMedGoogle Scholar
  8. Grubb AO (2000) Cystatin C–properties and use as diagnostic marker. Adv Clin Chem 35:63–99CrossRefPubMedGoogle Scholar
  9. Grubb A, Jensson O, Gudmundsson G et al (1984) Abnormal metabolism of gamma-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis. N Engl J Med 311:1547–1549. doi: 10.1056/NEJM198412133112406 CrossRefPubMedGoogle Scholar
  10. Hochleitner EO, Gorny MK, Zolla-Pazner S, Tomer KB (2000) Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. J Immunol 164:4156–4161CrossRefPubMedGoogle Scholar
  11. Janowski R, Kozak M, Jankowska E et al (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8:316–320. doi: 10.1038/86188 CrossRefPubMedGoogle Scholar
  12. Janowski R, Kozak M, Abrahamson M et al (2005) 3D domain-swapped human cystatin C with amyloidlike intermolecular beta-sheets. Proteins 61:570–578. doi: 10.1002/prot.20633 CrossRefPubMedGoogle Scholar
  13. Jemmerson R, Paterson Y (1986) Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science 232(4753):1001–1004CrossRefGoogle Scholar
  14. Jeyarajah S, Parker CE, Summer MT, Tomer KB (1998) Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody. J Am Soc Mass Spectrom 9:157–165CrossRefPubMedGoogle Scholar
  15. Johnstone A, Thorpe R (1996) Immunochemistry in practice, 3rd edn. Blackwell Science, Cambridge (ISBN-13: 978-0865426337, ISBN-10: 0865426333) Google Scholar
  16. Juszczyk P, Szymanska A, Rodziewicz-Motowidlo S et al (2008) Human cystatin C interactions with amyloidogenic molecules. J Pept Sci 14:29Google Scholar
  17. Juszczyk P, Paraschiv G, Szymanska A et al (2009) Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J Med Chem 52:2420–2428. doi: 10.1021/jm801115e CrossRefPubMedGoogle Scholar
  18. Kellner A, Matschke J, Bernreuther C et al (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65:24–31. doi: 10.1002/ana.21475 CrossRefPubMedGoogle Scholar
  19. Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530. doi: 10.1093/nar/gks438 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174CrossRefPubMedGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  22. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. doi: 10.1186/1745-7580-2-2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lassus J, Harjola VP (2012) Cystatin C: a step forward in assessing kidney function and cardiovascular risk. Hear Fail Rev 17:251–261. doi: 10.1007/s10741-011-9242-6 CrossRefGoogle Scholar
  24. Leslie D, Lipsky P, Notkins AL (2001) Autoantibodies as predictors of disease. J Clin Invest 108:1417–1422. doi: 10.1172/JCI14452 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lleo A (2014) Chapter 2—What is an autoantibody? In: Gershwin YSLME (ed) Autoantibodies, 3rd edn. Elsevier, San Diego, pp 13–20CrossRefGoogle Scholar
  26. Lleo A, Invernizzi P, Gao B et al (2010) Definition of human autoimmunity—autoantibodies versus autoimmune disease. Autoimmun Rev 9:A259–A266. doi: 10.1016/j.autrev.2009.12.002 CrossRefPubMedGoogle Scholar
  27. Lundström SL, Fernandes-Cerqueira C, Ytterberg AJ et al (2014a) IgG antibodies to cyclic citrullinated peptides exhibit profiles specific in terms of IgG subclasses, Fc-glycans and a fab-Peptide sequence. PLoS One 9:e113924. doi: 10.1371/journal.pone.0113924 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lundström SL, Yang H, Lyutvinskiy Y et al (2014b) Blood plasma IgG Fc glycans are significantly altered in Alzheimer’s disease and progressive mild cognitive impairment. J Alzheimers Dis 38:567–579. doi: 10.3233/JAD-131088 PubMedGoogle Scholar
  29. Lyutvinskiy Y, Yang HQ, Rutishauser D, Zubarev RA (2013) In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Mole Cell Proteom 12(8):2324–2331. doi: 10.1074/mcp.O112.023804 CrossRefGoogle Scholar
  30. McLaurin J, Cecal R, Kierstead ME et al (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269. doi: 10.1038/nm790 CrossRefPubMedGoogle Scholar
  31. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550. doi: 10.1080/10408360490504934 CrossRefPubMedGoogle Scholar
  32. Nagele RG, DeMarshall C, Acharya NK et al (2014) Utility of Autoantibody Biomarkers for Detection of Alzheimer’s Disease. Alzheimer’s Dement 10:P300. doi: 10.1016/j.jalz.2014.04.502 CrossRefGoogle Scholar
  33. Nagele RG, DeMarshall C, Acharya NK et al (2015) Utility of autoantibody biomarkers for detection of Alzheimer’s Disease. Alzheimer’s Dement J Alzheimer’s Assoc 10:P300. doi: 10.1016/j.jalz.2014.04.502 CrossRefGoogle Scholar
  34. Neff F, Wei X, Nölker C et al (2008) Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 7:501–507. doi: 10.1016/j.autrev.2008.04.010 CrossRefPubMedGoogle Scholar
  35. Nilsson M, Wang X, Rodziewicz-Motowidlo S et al (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245. doi: 10.1074/jbc.M402621200 CrossRefPubMedGoogle Scholar
  36. Olafsson I, Grubb A (2000) Hereditary cystatin C amyloid angiopathy. Amyloid 7:70–79CrossRefPubMedGoogle Scholar
  37. Östner G, Lindström V, Postnikov AB et al (2011) High throughput testing of drug library substances and monoclonal antibodies for capacity to reduce formation of cystatin C dimers to identify candidates for treatment of hereditary cystatin C amyloid angiopathy. Scand J Clin Lab Invest 71:676–682. doi: 10.3109/00365513.2011.621026 CrossRefPubMedGoogle Scholar
  38. Palsdottir A, Abrahamson M, Thorsteinsson L et al (1988) Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet 2:603–604CrossRefPubMedGoogle Scholar
  39. Ponomarenko JV, Van Regenmortel MHV (2009) B-cell epitope prediction. Chapter 35 Structural bioinformatics, Wiley-Blackwell, New JerseyGoogle Scholar
  40. Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514. doi: 10.1186/1471-2105-9-514 CrossRefGoogle Scholar
  41. Sánchez-Mateos P, Sánchez-Madrid F (1991) Structure-function relationship and immunochemical mapping of external and intracellular antigenic sites on the lymphocyte activation inducer molecule, AIM/CD69. Eur J Immunol 21:2317–2325. doi: 10.1002/eji.1830211005 CrossRefPubMedGoogle Scholar
  42. Sladewska A, Szymańska A, Kordalska M et al (2011) Identification of the epitope for anti-cystatin C antibody. J Mol Recognit 24:687–699. doi: 10.1002/jmr.1100 CrossRefPubMedGoogle Scholar
  43. Solomon B (2008) Immunological approaches for amyloid-beta clearance toward treatment for Alzheimer’s disease. Rejuvenation Res 11:349–357. doi: 10.1089/rej.2008.0689 CrossRefPubMedGoogle Scholar
  44. Southwell AL, Patterson PH (2010) Antibody therapy in neurodegenerative disease. Rev Neurosci 21:273–287CrossRefPubMedGoogle Scholar
  45. Spodzieja M, Szymańska A, Kołodziejczyk A et al (2012) Interaction of serum amyloid A with human cystatin C–identification of binding sites. J Mol Recognit 25:513–524. doi: 10.1002/jmr.2220 CrossRefPubMedGoogle Scholar
  46. Spodzieja M, Rafalik M, Szymańska A et al (2013) Interaction of serum amyloid A with human cystatin C–assessment of amino acid residues crucial for hCC-SAA formation (part II). J Mol Recognit 26:415–425. doi: 10.1002/jmr.2283 CrossRefPubMedGoogle Scholar
  47. Staniforth RA, Giannini S, Higgins LD et al (2001) Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J 20:4774–4781. doi: 10.1093/emboj/20.17.4774 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stefanescu R, Iacob RE, Damoc EN et al (2007) Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. Eur J Mass Spectrom (Chichester, Eng) 13:69–75. doi: 10.1255/ejms.849 CrossRefGoogle Scholar
  49. Szymańska A, Radulska A, Czaplewska P et al (2009) Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochim Pol 56:455–463PubMedGoogle Scholar
  50. Terryberry JW, Thor G, Peter JB (1998) Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol Aging 19:205–216. doi: 10.1016/S0197-4580(98)00049-9 CrossRefPubMedGoogle Scholar
  51. Tian X, Cecal R, McLaurin J et al (2005) Identification and structural characterisation of carboxy-terminal polypeptides and antibody epitopes of Alzheimer’s amyloid precursor protein using high-resolution mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 11:547–556. doi: 10.1255/ejms.722 CrossRefGoogle Scholar
  52. Tian X, Maftei M, Kohlmann M et al (2007) Differential epitope identification of antibodies against intracellular domains of alzheimer’s amyloid precursor protein using high resolution affinity-mass spectrometry. Subcell Biochem 43:339–354CrossRefPubMedGoogle Scholar
  53. Tissot JD, Schifferli JA, Hochstrasser DF et al (1994) Two-dimensional polyacrylamide gel electrophoresis analysis of cryoglobulins and identification of an IgM-associated peptide. J Immunol Methods 173:63–75CrossRefPubMedGoogle Scholar
  54. Vu DH, Schneider P, Tissot JD (2002) Electrophoretic characteristics of monoclonal immunoglobulin G of different subclasses. J Chromatogr B Anal Technol Biomed Life Sci 771:355–368CrossRefGoogle Scholar
  55. Wahlbom M, Wang X, Lindström V et al (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem 282:18318–18326. doi: 10.1074/jbc.M611368200 CrossRefPubMedGoogle Scholar
  56. Wei X, Roettger Y, Tan B et al (2012) Human anti-prion antibodies block prion peptide fibril formation and neurotoxicity. J Biol Chem 287:12858–12866. doi: 10.1074/jbc.M111.255836 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19:77–96. doi: 10.1002/rmv.602 CrossRefPubMedGoogle Scholar
  58. Zerovnik E, Stoka V, Mirtic A et al (2011) Mechanisms of amyloid fibril formation–focus on domain-swapping. FEBS J 278:2263–2282. doi: 10.1111/j.1742-4658.2011.08149.x CrossRefPubMedGoogle Scholar
  59. Zhang Q, Wang P, Kim Y et al (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518. doi: 10.1093/nar/gkn254 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Martyna Prądzińska
    • 1
  • Izabela Behrendt
    • 1
  • Marta Spodzieja
    • 1
  • Aleksandra S. Kołodziejczyk
    • 1
  • Sylwia Rodziewicz-Motowidło
    • 1
  • Aneta Szymańska
    • 1
  • Susanna L. Lundström
    • 2
  • Roman A. Zubarev
    • 2
  • Katarzyna Macur
    • 3
  • Paulina Czaplewska
    • 3
    Email author return OK on get
  1. 1.Faculty of Chemistry, Department of Biomedical ChemistryUniversity of GdanskGdanskPoland
  2. 2.Division of Chemistry I, Head Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
  3. 3.Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of GdanskGdanskPoland

Personalised recommendations