Advertisement

Amino Acids

, Volume 48, Issue 9, pp 2237–2242 | Cite as

Efficient synthesis of both diastereomers of β,γ-diamino acids from phenylalanine and tryptophan

  • Nicolas Auberger
  • Andrii Stanovych
  • Sophie Thétiot-Laurent
  • Régis Guillot
  • Cyrille Kouklovsky
  • Sylvain Cote des Combes
  • Christophe Pacaud
  • Ingrid Devillers
  • Valérie Alezra
Original Article

Abstract

We synthesized in a few steps both diastereomers of orthogonally protected β,γ-diamino acids starting from l-phenylalanine or l-tryptophan. These final compounds are interesting building blocks for peptide synthesis and foldamer chemistry. The key step is a Blaise reaction performed under ultrasound conditions.

Keywords

Non proteinogenic amino acid synthesis Blaise reaction Asymmetric synthesis β-amino acid γ-amino acid 

Notes

Acknowledgments

This research was supported by the M.E.S.R. (Doctoral Grant to A.S.).

Compliance with ethical standards

This research does not involve any human or animal participant.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Baba A, Yasuda M, Nishimoto Y (2014) Zinc enolates. In: Knochel P, Molander GA (eds) The Reformatsky and Blaise Reactions, Comprehensive organic synthesis II, 2nd edn. Elsevier, Amsterdam, pp 523–542Google Scholar
  2. Bouillère F, Guillot R, Kouklovsky C, Alezra V (2011a) Access to β,γ-diamino acids. Application to the synthesis of 3-deoxyaminostatine. Org Biomol Chem 9:394–399CrossRefPubMedGoogle Scholar
  3. Bouillère F, Thétiot-Laurent S, Kouklovsky C, Alezra V (2011b) Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids 41:687–707CrossRefPubMedGoogle Scholar
  4. Bouillère F, Feytens D, Gori D et al (2012) Constrained [α]/[γ]-peptides: a new stable extended structure in solution without any hydrogen bond and characterized by a fourfold symmetry. Chem Commun 48:1982–1984CrossRefGoogle Scholar
  5. Calvisi G, Dell’Uomo N, De Angelis F et al (2003) A practical and stereoconservative synthesis of (R)-3-Amino-4-(trimethylammonio)butanoate [(R)-Aminocarnitine], and its trimethylphosphonium and simple ammonium analogues starting from D-Aspartic acid. Eur J Org Chem 2003:4501–4505CrossRefGoogle Scholar
  6. Cativiela C, Díaz-de-Villegas MD (2007) Recent progress on the stereoselective synthesis of acyclic quaternary α-amino acids. Tetrahedron Asymmetry 18:569–623CrossRefGoogle Scholar
  7. Chun YS, Xuan Z, Kim JH, Lee S (2013) An expedient and divergent tandem one-pot synthesis of pyrimidin-2,4-diones using the Blaise reaction intermediate. Org Lett 15:3162–3165CrossRefPubMedGoogle Scholar
  8. Concellón JM, Rodríguez-Solla H, Simal C et al (2009) The addition reaction of samarium enolates and 2-Haloenolates derived from esters, and amides to imines. Totally stereoselective synthesis of enantiopure 3,4-diamino esters or amides. Adv Synth Catal 351:2991–3000CrossRefGoogle Scholar
  9. Davies SG, Lee JA, Roberts PM et al (2012) Parallel kinetic resolution of acyclic γ-amino-α, β-unsaturated esters: application to the asymmetric synthesis of 4-Aminopyrrolidin-2-ones. Org Lett 14:218–221CrossRefPubMedGoogle Scholar
  10. Dénès F, Pérez-Luna A, Chemla F (2010) Addition of metal enolate derivatives to unactivated carbon–carbon multiple bonds. Chem Rev 110:2366–2447CrossRefPubMedGoogle Scholar
  11. Gomez-Bengoa E, Linden A, López R et al (2008) Asymmetric aza-Henry reaction under phase transfer catalysis: an experimental and theoretical study. J Am Chem Soc 130:7955–7966. doi: 10.1021/ja800253z CrossRefPubMedGoogle Scholar
  12. Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 47:5933–5941CrossRefGoogle Scholar
  13. Hernández JN, Martín VS (2004) First practical protection of α-amino acids as N,N-benzyloxycarbamoyl derivatives. J Org Chem 69:3590–3592CrossRefPubMedGoogle Scholar
  14. Hoang CT, Alezra V, Guillot R, Kouklovsky C (2007) A stereoselective entry into functionalized 1,2-diamines by zinc-mediated homologation of α-amino acids. Org Lett 9:2521–2524CrossRefPubMedGoogle Scholar
  15. Hoang CT, Bouillère F, Johannesen S et al (2009) Amino acid homologation by the Blaise reaction: a new entry into nitrogen heterocycles. J Org Chem 74:4177–4187CrossRefPubMedGoogle Scholar
  16. Juaristi E, Soloshonok V (2005) Enantioselective synthesis of beta-amino acids, 2nd edn. Wiley, New Jersey. ISBN:978-0-471-46738-0CrossRefGoogle Scholar
  17. Kim JH, Chun YS, Lee S (2013) Tandem Blaise/retro-Blaise reaction for the nitrile-mediated regioselective intermolecular addition of unstabilized zinc ester enolates (Reformatsky reagents) to 1-alkynes and 1,3-enynes. J Org Chem 78:11483–11493CrossRefPubMedGoogle Scholar
  18. Martinek TA, Fülöp F (2012) Peptidic foldamers: ramping up diversity. Chem Soc Rev 41:687–702CrossRefPubMedGoogle Scholar
  19. Ordóñez M, Cativiela C (2007) Stereoselective synthesis of γ-amino acids. Tetrahedron Asymmetry 18:3–99CrossRefGoogle Scholar
  20. Pérez-Faginas P, Aranda MT, García-López MT et al (2013) Highly functionalized 1,2–diamino compounds through reductive amination of amino acid-derived β–keto esters. PLoS One 8:e53231CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pilsl L, Reiser O (2011) α/β-Peptide foldamers: state of the art. Amino Acids 41:709–718CrossRefPubMedGoogle Scholar
  22. Prakash Rao HS, Rafi S, Padmavathy K (2008) The Blaise reaction. Tetrahedron 64:8037–8043CrossRefGoogle Scholar
  23. Sakthivel K, Srinivasan K (2014) Synthesis of naphthalene amino esters by the Blaise reaction of o-alkynylarenenitriles. J Org Chem 79:3244–3248CrossRefPubMedGoogle Scholar
  24. Seebach D, Gardiner J (2008) β-Peptidic peptidomimetics. Acc Chem Res 41:1366–1375CrossRefPubMedGoogle Scholar
  25. Shinagawa S, Kanamaru T, Harada S et al (1987) Chemistry of emeriamine and its analogs and their inhibitory activity in long-chain fatty acid oxidation. J Med Chem 30:1458–1463CrossRefPubMedGoogle Scholar
  26. Shioiri T, Irako N (2002) An efficient synthesis of the piperazinone fragment of pseudotheonamide A1 via a stereoselective intramolecular michael ring closure. Chem Lett 31:130–131CrossRefGoogle Scholar
  27. Stanovych A, Guillot R, Kouklovsky C et al (2014) β, γ-Diamino acid: an original building block for hybrid α/γ-peptide synthesis with extra hydrogen bond donating group. Amino Acids 46:2753–2757CrossRefPubMedGoogle Scholar
  28. Thétiot-Laurent S, Bouillère F, Baltaze JP et al (2012) Original β, γ-diamino acid as an inducer of a γ-turn mimic in short peptides. Org Biomol Chem 10:9660–9663CrossRefPubMedGoogle Scholar
  29. Toniolo C, Crisma M, Formaggio F, Peggion C (2001) Control of peptide conformation by the Thorpe-Ingold effect (Cα-tetrasubstitution). Pept Sci 60:396–419CrossRefGoogle Scholar
  30. Vasudev PG, Chatterjee S, Shamala N, Balaram P (2011) Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. Chem Rev 111:657–687CrossRefPubMedGoogle Scholar
  31. Vogt H, Bräse S (2007) Recent approaches towards the asymmetric synthesis of α, α-disubstituted α-amino acids. Org Biomol Chem 5:406–430CrossRefPubMedGoogle Scholar
  32. Yoon DH, Ha HJ, Kim BC, Lee WK (2010) Conjugate addition of amines to chiral 3-aziridin-2-yl-acrylates. Tetrahedron Lett 51:2181–2183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Nicolas Auberger
    • 1
  • Andrii Stanovych
    • 1
  • Sophie Thétiot-Laurent
    • 1
  • Régis Guillot
    • 1
  • Cyrille Kouklovsky
    • 1
  • Sylvain Cote des Combes
    • 2
  • Christophe Pacaud
    • 2
  • Ingrid Devillers
    • 2
  • Valérie Alezra
    • 1
  1. 1.Faculté des Sciences d’OrsayUniv. Paris-Sud, Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Sanofi Recherche et DéveloppementChilly Mazarin CedexFrance

Personalised recommendations