Advertisement

Amino Acids

, Volume 48, Issue 9, pp 2205–2214 | Cite as

Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system

  • Milene C. Menezes
  • Lionel Imbert
  • Eduardo S. Kitano
  • Thierry VernetEmail author
  • Solange M. T. SerranoEmail author
Original Article
  • 449 Downloads

Abstract

Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues.

Keywords

Cell-free protein synthesis Cys-rich proteins Disintegrin-like/cysteine-rich Recombinant protein expression Snake venom metalloproteinase 

Notes

Acknowledgments

This work used the Cell Free Expression platform (Lionel Imbert) of the Grenoble center Tutorial (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with media from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank Ismael Feitosa Lima for excellent technical help. This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (1214/2011, 7737/14-9), Fundação de Amparo à Pesquisa do Estado de São Paulo (2013/07467-1) and from a dedicated grant from the Direction des Sciences du Vivant of the CEA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

726_2016_2255_MOESM1_ESM.doc (138 kb)
Supplementary material 1 (DOC 138 kb)

References

  1. Assakura MT, Reichl AP, Mandelbaum FR (1986) Comparison of immunological, biochemical and biophysical properties of three hemorrhagic factors isolated from the venom of Bothrops jararaca (jararaca). Toxicon 24(9):943–946. doi: 10.1016/0041-0101(86)90094-2 CrossRefPubMedGoogle Scholar
  2. Assakura MT, Silva CA, Mentele R, Camargo AC, Serrano SM (2003) Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon 41:217–227CrossRefPubMedGoogle Scholar
  3. Baramova EN, Shannon JD, Bjarnason JB, Fox JW (1990) Identification of the cleavage sites by a hemorrhagic metalloproteinase in type IV collagen. Matrix 10(2):91–97. doi: 10.1016/S0934-8832(11)80175-7 CrossRefPubMedGoogle Scholar
  4. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203CrossRefPubMedGoogle Scholar
  5. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194. doi: 10.1016/j.biotechadv.2011.09.016 CrossRefPubMedGoogle Scholar
  6. Fox JW, Serrano SM (2008) Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275(12):3016–3030. doi: 10.1111/j.1742-4658.2008.06466.x CrossRefPubMedGoogle Scholar
  7. Fox JW, Serrano SMT (2009) Timeline of key events in snake venom metalloproteinase research. J Proteomics 72:200–209. doi: 10.1016/j.jprot.2009.01.015 CrossRefPubMedGoogle Scholar
  8. Gutiérrez JM, Rucavado A, Escalante T, Díaz C (2005) Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45(8):997–1011. doi: 10.1016/j.toxicon.2005.02.029 CrossRefPubMedGoogle Scholar
  9. Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146(Pt 10):2495–2508. doi: 10.1099/00221287-146-10-2495 CrossRefPubMedGoogle Scholar
  10. Jia LG, Wang XM, Shannon JD, Bjarnason JB, Fox JW (2000) Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A. Arch Biochem Biophys 373:281–286. doi: 10.1006/abbi.1999.1517 CrossRefPubMedGoogle Scholar
  11. Kamiguti AS, Gallagher P, Marcinkiewicz C, Theakston RD, Zuzel M, Fox JW (2003) Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Lett 549:129–134CrossRefPubMedGoogle Scholar
  12. Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68. doi: 10.1023/B:JSFG.0000029204.57846.7d CrossRefPubMedGoogle Scholar
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  14. Menezes MC, Paes Leme AF, Melo RL, Silva CA, Della Casa M, Bruni FM, Lima C, Lopes-Ferreira M, Camargo AC, Fox JW, Serrano SM (2008) Activation of leukocyte rolling by the cysteine-rich domain and the hyper-variable region of HF3, a snake venom hemorrhagic metalloproteinase. FEBS Lett 582:3915–3921. doi: 10.1016/j.febslet.2008.10.034 CrossRefPubMedGoogle Scholar
  15. Menezes MC, de Oliveira AK, Melo RL, Lopes-Ferreira M, Rioli V, Balan A, Paes Leme AF, Serrano SM (2011) Disintegrin-like/cysteine-rich domains of the reprolysin HF3: site-directed mutagenesis reveals essential role of specific residues. Biochimie 93:345–351. doi: 10.1016/j.biochi.2010.10.007 CrossRefPubMedGoogle Scholar
  16. Moura-da-Silva AM, Butera D, Tanjoni I (2007) Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des 13(28):2893–2905. doi: 10.2174/138161207782023711 CrossRefPubMedGoogle Scholar
  17. Moura-da-Silva AM, Serrano SMT, Fox JW, Gutiérrez JM (2009) Snake venom metalloproteinases: structure, function and effects on snake bite pathology. In: Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H (org) Animal toxins: state of the art. Perspectives in health and biotechnology, Editora UFMG, Belo Horizonte, pp 525–546Google Scholar
  18. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494. doi: 10.1074/jbc.274.31.21491 CrossRefPubMedGoogle Scholar
  19. Oliveira AK, Paes Leme AF, Assakura MT, Menezes MC, Zelanis A, Tashima AK, Lopes-Ferreira M, Lima C, Camargo AC, Fox JW, Serrano SM (2009) Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon 53:797–801. doi: 10.1016/j.toxicon.2009.02.019 CrossRefGoogle Scholar
  20. Oliveira AK, Paes Leme AF, Asega AF, Camargo AC, Fox JW, Serrano SM (2010) New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases. Thromb Haemost 104(3):485–497. doi: 10.1160/TH09-12-0855 CrossRefPubMedGoogle Scholar
  21. Portes-Junior JA, Yamanouye N, Carneiro SM, Knittel PS, Sant’Anna SS, Nogueira FC, Junqueira M, Magalhães GS, Domont GB, Moura-da-Silva AM (2014) Unraveling the processing and activation of snake venom metalloproteinases. J Proteome Res 13:3338–3348. doi: 10.1021/pr500185a CrossRefPubMedGoogle Scholar
  22. Rosenblum G, Cooperman BS (2014) Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 588:261–268. doi: 10.1016/j.febslet.2013.10.016 CrossRefPubMedGoogle Scholar
  23. Rucavado A, Lomonte B, Ovadia M, Gutiérrez JM (1995) Local tissue damage induced by BaP1, a metalloproteinase isolated from Bothrops asper (Terciopelo) snake venom. Exp Mol Pathol 63(3):186–199. doi: 10.1006/exmp.1995.1042 CrossRefPubMedGoogle Scholar
  24. Serrano SMT, Jia L-G, Wang D, Shannon JD, Fox JW (2005) Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. Biochem J 391:69–76. doi: 10.1042/BJ20050483 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Serrano SMT, Kim J, Wang D, Dragulev B, Shannon JD, Mann HH, Veit G, Wagener R, Koch M, Fox JW (2006) The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem 281:39746–39756. doi: 10.1074/jbc.M604855200 CrossRefPubMedGoogle Scholar
  26. Serrano SMT, Wang D, Shannon JD, Pinto AFM, Polanowska-Grabowska RK, Fox JW (2007) Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation. FEBS J 274:3611–3621. doi: 10.1111/j.1742-4658.2007.05895.x CrossRefPubMedGoogle Scholar
  27. Serrano SMT, Oliveira AK, Menezes MC, Zelanis A (2014) The proteinase-rich proteome of Bothrops jararaca venom. Toxin Rev 33:169–184CrossRefGoogle Scholar
  28. Silva CA, Zuliani JP, Assakura MT, Mentele R, Camargo AC, Teixeira CF, Serrano SM (2004) Activation of alpha(M)beta(2)-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun 322:950–956. doi: 10.1016/j.bbrc.2004.08.012 CrossRefPubMedGoogle Scholar
  29. Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth FX, McKay DB, Bode W (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4(5):823–840. doi: 10.1002/pro.5560040502 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tanjoni I, Evangelista K, Della-Casa MS, Butera D, Magalhães GS, Baldo C, Clissa PB, Fernandes I, Eble J, Moura-da-Silva AM (2010) Different regions of the class P-III snake venom metalloproteinase jararhagin are involved in binding to alpha2beta1 integrin and collagen. Toxicon 55:1093–1099. doi: 10.1016/j.toxicon.2009.12.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Milene C. Menezes
    • 1
  • Lionel Imbert
    • 2
    • 3
    • 4
  • Eduardo S. Kitano
    • 1
  • Thierry Vernet
    • 2
    • 3
    • 4
    Email author
  • Solange M. T. Serrano
    • 1
    Email author
  1. 1.Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell SignalingInstituto ButantanSão PauloBrazil
  2. 2.Institut de Biologie StructuraleUniversity of Grenoble AlpesGrenobleFrance
  3. 3.CNRS, IBSGrenobleFrance
  4. 4.CEA, IBSGrenobleFrance

Personalised recommendations