Skip to main content

Advertisement

Log in

The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Glutamine is a nutritionally semi-essential amino acid for proper growth in most cells and tissues, and plays an important role in the determination and guarding of the normal metabolic processes of the cells. With the help of transport systems, extracellular l-glutamine crosses the plasma membrane and is converted into alpha-ketoglutarate (AKG) through two pathways, namely, the glutaminase (GLS) I and II pathway. Reversely, AKG can be converted into glutamine by glutamate dehydrogenase (GDH) and glutamine synthetase (GS), or be converted into CO2 via the tricarboxylic acid (TCA) cycle and provide energy for the cells. Different steps of glutamine metabolism (the glutamine-AKG axis) are regulated by several factors, rendering the glutamine-AKG axis a potential target to counteract cancer. Moreover, intracellular glutamine plays an important role in cellular homeostasis not only as a precursor for protein synthesis, but also for its nutritional roles in cell growth, lipid metabolism, insulin secretion, and so on. The main objective of this review is to highlight the metabolic pathways of glutamine to AKG, with special emphasis on nutritional and therapeutic use of glutamine-AKG axis to improve the health and well-being of animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from (Pochini et al. 2014)

Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AKG:

Alpha-ketoglutarate

α-KGDH:

Alpha-ketoglutarate dehydrogenase

ADP:

Adenosine diphosphate

ASCT2:

ASC amino acid transporter-2

ATP:

Adenosine triphosphate

BCAT:

Branched-chain amino acid aminotransferase

BW:

Body weight

CREB2:

cAMP-responsive element binding 2

FOXO:

Forkhead box O

GDH:

Glutamate dehydrogenase

GLS:

Glutaminase

GPNA:

γ-l-Glutamyl-p-nitroanilide

GS:

Glutamine synthetase

GTP:

Guanosine triphosphate

GTPase:

Guanosine triphosphatase

HDL:

High density lipoproteins

HIF:

Hypoxia-inducible factor

IPEC-1:

Intestinal porcine epithelial cell-1

KGM:

Alpha-ketoglutaramate

KIC:

Alpha-ketoisocaproate

LAT1/2:

L-type amino acid transporter 1/2

LDL:

Low density lipids

MAPK:

Mitogen-activated protein kinase

MEFs:

Mouse embryonic fibroblasts

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

NADH:

Nicotinamide adenine dinucleotide hydrogen

NADPH:

Reduced nicotinamide adenine dinucleotidephosphate

OKG:

Ornithine-ketoglutarate

PAG:

Phosphate-activated glutaminase

PI(3)K:

Phosphatidylinositol 3-kinase class I

PKB:

Protein kinase B

ROS:

Reactive oxygen species

S6K1:

p70 ribosomal protein S6 kinase

SIRT4:

Sirtuin 4

SNAT:

Sodium-coupled neutral amino acid transporter

TCA:

Tricarboxylic acid

VEGF:

Vascular endothelial growth factor

References

  • Ahluwalia GS, Grem JL, Hao Z et al (1990) Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 46:243–271

    Article  CAS  PubMed  Google Scholar 

  • Albracht SPJ, Meijer AJ, Rydstrom J (2011) Mammalian NADH:ubiquinone oxidoreductase (complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2-Implications for their role in disease, especially cancer. J Bioenerg Biomembr 43:541–564

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  • Benjamin D, Colombi M, Moroni C et al (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880

    Article  CAS  PubMed  Google Scholar 

  • Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieńko M, Radzki RP, Puzio I et al (2003) AKG a potential therapeutic drug agent in the treatment of osteoporoselike skeletal system disorders. Bone 5:223

    Google Scholar 

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814s–821s

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist BI, Hammarqvist F, Vonderdecken A et al (1995) Glutamine and α-ketoglutarate prevent the decrease in muscle free glutamine concentration and influence protein synthesis after total hip replacement. Metabolism 44:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131:2475s–2485s

    CAS  PubMed  Google Scholar 

  • Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    Article  CAS  PubMed  Google Scholar 

  • Burrin DG, Stoll B (2009) Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr 90:850s–856s

    Article  CAS  PubMed  Google Scholar 

  • Cardaci S, Ciriolo MR (2012) Deprive to kill glutamine closes the gate to anticancer monocarboxylic drugs. Autophagy 8:1830–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardaci S, Rizza S, Filomeni G et al (2012) Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res 72:4526–4536

    Article  CAS  PubMed  Google Scholar 

  • Carobbio S, Frigerio F, Rubi B et al (2009) Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis. J Biol Chem 284:921–929

    Article  CAS  PubMed  Google Scholar 

  • Chenu C (2002a) Glutamatergic innervation in bone. Microsc Res Tech 58:70–76

    Article  CAS  PubMed  Google Scholar 

  • Chenu C (2002b) Glutamatergic regulation of bone remodelling. J Musculoskel Neuron Interact 2:282–284

    CAS  Google Scholar 

  • Choo AY, Kim SG, Heiden MGV et al (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AJL, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. Biol Chem 378:793–802

    CAS  PubMed  Google Scholar 

  • Cooper AJ, Kuhara T (2014) alpha-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 29:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Csibi A, Fendt SM, Li CG et al (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csibi A, Lee G, Yoon SO et al (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24:2274–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curi R, Newsholme P, Pithon-Curi TC et al (1999) Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz J Med Biol Res 32:15–21

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Procopio J et al (2007) Glutamine, gene expression, and cell function. Front Biosci 12:344–357

    Article  CAS  PubMed  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  CAS  PubMed  Google Scholar 

  • Cynober LA (1999) The use of alpha-ketoglutarate salts in clinical nutrition and metabolic care. Curr Opin Clin Nutr Metab Care 2:33

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  CAS  PubMed  Google Scholar 

  • Dakshayani KB, Velvizhi S, Subramanian P (2002) Effects of ornithine alpha-ketoglutarate on circulatory antioxidants and lipid peroxidation products in ammonium acetate treated rats. Ann Nutr Metab 46:93–96

    Article  CAS  PubMed  Google Scholar 

  • Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369

    Article  CAS  PubMed  Google Scholar 

  • Dazert E, Hall MN (2011) mTOR Signaling in disease. Curr Opin Cell Biol 23:744–755

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Den Hond E, Hiele M, Peeters M et al (1999) Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn’s disease. J Parenter Enter Nutr 23:7–11

    Article  Google Scholar 

  • Dobrowolski PJ, Piersiak T, Surve VV et al (2008) Dietary alpha-ketoglutarate reduces gastrectomy-evoked loss of calvaria and trabecular bone in female rats. Scand J Gastroenterol 43:551–558

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Li F, Li Y et al (2016) The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 48:41–51

    Article  CAS  PubMed  Google Scholar 

  • Durán RV, Oppliger W, Robitaille AM et al (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  PubMed  CAS  Google Scholar 

  • Errera M, Greenstein JP (1949) Phosphate-activated glutaminase in kidney and other tissues. J Biol Chem 178:495–502

    CAS  PubMed  Google Scholar 

  • Filip R, Pierzynowski SG (2007) The role of glutamine and alfa-ketoglutarate in gut metabolism and the potential application in medicine and nutrition. J Pre Clin Clin Res 1:9–15

    Google Scholar 

  • Frigerio F, Casimir M, Carobbio S et al (2008) Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Bba Bioenergetics 1777:965–972

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Young RA, Li GZ et al (2003) Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology 144:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    Article  CAS  PubMed  Google Scholar 

  • Hammarqvist F, Wernerman J, Ali R et al (1989) Addition of glutamine to total parenteral-nutrition after elective abdominal-surgery spares free glutamine in muscle, counteracts the fall in muscle protein-synthesis, and improves nitrogen-balance. Ann Surg 209:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison AP, Pierzynowski SG (2008) Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art. J Physiol Pharmacol 59:91–106

    PubMed  Google Scholar 

  • Harrison AP, Tygesen MP, Sawa-Wojtanowicz B et al (2004) alpha-Ketoglutarate treatment early in postnatal life improves bone density in lambs at slaughter. Bone 35:204–209

    Article  CAS  PubMed  Google Scholar 

  • Hassanein M, Hoeksema MD, Shiota M et al (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570

    Article  CAS  PubMed  Google Scholar 

  • He WH, Miao FJP, Lin DCH et al (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Article  CAS  PubMed  Google Scholar 

  • Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wang L, Ding BY et al (2010) Dietary alpha-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang L, Ding B et al (2011) Alpha-ketoglutarate and intestinal function. Front Biosci Landmark 16:1186–1196

    Article  CAS  Google Scholar 

  • Hsu BYL, Kelly A, Thornton PS et al (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138:383–389

    Article  CAS  PubMed  Google Scholar 

  • Hwu WL, Chiang SC, Chang MH et al (2000) Carnitine transport defect presenting with hyperammonemia: report of one case. Acta Paediatr Taiwan 41:36–38

    CAS  PubMed  Google Scholar 

  • Ito M, Nishida A, Nakamura T et al (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30:594–598

    Article  CAS  PubMed  Google Scholar 

  • Jeevanandam M, Petersen SR (1999) Substrate fuel kinetics in enterally fed traumapatients supplemented with ornithine alpha ketoglutarate. Clin Nutr 18:209–217

    Article  CAS  PubMed  Google Scholar 

  • Jeevanandam M, Holaday NJ, Petersen SR (1996) Ornithine-alpha-ketoglutarate (OKG) supplementation is more effective than its component salts in traumatized rats. J Nutr 126:2141–2150

    CAS  PubMed  Google Scholar 

  • Jeevanandam M, Begay CK, Holaday NJ et al (1997) Nutritional and metabolic effects and significance of mild orotic aciduria during dietary supplementation with arginine or its organic salts after trauma injury in rats. Metabolism 46:785–792

    Article  CAS  PubMed  Google Scholar 

  • Jewell JL, Kim YC, Russell RC et al (2015) Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghans P, Derno M, Pierzynowski S et al (2006) Intraduodenal infusion of alpha-ketoglutarate decreases whole body energy expenditure in growing pigs. Clin Nutr 25:489–496

    Article  CAS  PubMed  Google Scholar 

  • Kelly A, Ng D, Ferry RJ et al (2001) Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab 86:3724–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly A, Li C, Gao Z et al (2002) Glutaminolysis and insulin secretion: from bedside to bench and back. Diabetes 51:S421–S426

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk JM, Curi R, Newsholme EA (1988) Glutamine-metabolism in isolated incubated adipocytes of the rat. Biochem J 249:705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalik S, Valverde JL, Pierzynowski S et al (2002) The influence of alpha-ketoglutarate on growth, development and mineralization of the skeletal system during the postnatal life in the pig. Acta Orthop Scand 73:50

    Article  Google Scholar 

  • Kowalik S, Sliwa E, Tatara MR et al (2005) Influence of alpha-ketoglutarate on mineral density and geometrical and mechanical parameters of femora during postnatal life in piglets. B Vet I Pulawy 49:107–111

    Google Scholar 

  • Kristensen NB, Jungvid H, Fernández JA et al (2002) Absorption and metabolism of α-ketoglutarate in growing pigs. J Anim Physiol A Anim Nutr 86:239–245

    Article  CAS  Google Scholar 

  • Labow BI, Souba WW (2000) Glutamine. World J Surg 24:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Lambert BD, Stoll B, Niinikoski H et al (2002) Net portal absorption of enterally fed alpha-ketoglutarate is limited in young pigs. J Nutr 132:3383–3386

    CAS  PubMed  Google Scholar 

  • Lambert BD, Filip R, Stoll B et al (2006) First-pass metabolism limits the intestinal absorption of enteral alpha-ketoglutarate in young pigs. J Nutr 136:2779–2784

    CAS  PubMed  Google Scholar 

  • Lebricon T, Cynober L, Field CJ et al (1995) Supplemental nutrition with ornithine alpha-ketoglutarate in rats with cancer-associated cachexia—surgical-treatment of the tumor improves efficacy of nutritional support. J Nutr 125:2999–3010

    CAS  Google Scholar 

  • Li C (2015) Insulin secretion and the glutamine-glutamate-alpha-ketoglutarate axis. In: Rajendram R, Preedy VR, Patel VB (eds) Glutamine in clinical nutrition. Humana Press, New York, pp 239–254. doi:10.1007/978-1-4939-1932-1_19

    Google Scholar 

  • Li CH, Najafi H, Daikhin Y et al (2003) Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Buettger C, Kwagh J et al (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li CH, Allen A et al (2011) The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int 59:445–455

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li CH, Allen A et al (2012) The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 519:69–80

    Article  CAS  PubMed  Google Scholar 

  • Lorin S, Tol MJ, Bauvy C et al (2013) Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9:850–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald MJ (2007) Synergistic potent insulin release by combinations of weak secretagogues in pancreatic islets and INS-1 cells. J Biol Chem 282:6043–6052

    Article  CAS  PubMed  Google Scholar 

  • MacDonald MJ, Fahien LA, Brown LJ et al (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288:E1–E15

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie ED, Selak MA, Tennant DA et al (2007) Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Imagawa S, Obara N et al (2006) 2-Oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-1α and inhibits angiogenesis. J Cell Physiol 209:333–340

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Obara N, Ema M et al (2009) Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Sci 100:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • McGivan JD, Bungard CI (2007) The transport of glutamine into mammalian cells. Front Biosci 12:874–882

    Article  CAS  PubMed  Google Scholar 

  • McLain AL, Szweda PA, Szweda LI (2011) Alpha-ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 45:29–36

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ (2008) Amino acid regulation of autophagosome formation. Methods Mol Biol 445:89–109

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46:210–240

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nakajo T, Yamatsuji T, Ban H et al (2005) Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells. Biochem Biophys Res Commun 326:174–180

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kawamata Y, Kuwahara T et al (2013) Removal of glutamate from diet suppresses fat oxidation and promotes fatty acid synthesis in rats. FASEB J 27(631):616

    Google Scholar 

  • Newsholme P, Procopio J, Lima MMR et al (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nicklin P, Bergman P, Zhang B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsang S, Nehru V, Plieva FM et al (2008) Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol Prog 24:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Nissim I (1999) Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol 277:F493

    CAS  PubMed  Google Scholar 

  • Perez-Gomez C, Campos-Sandoval JA, Alonso FJ et al (2005) Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem J 386:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierzynowski SG, Sjodin A (1998a) A perspective of glutamine and its derivatives. J Anim Feed Sci 7:79–91

    Google Scholar 

  • Pierzynowski SG, Sjodin A (1998b) Perspectives of glutamine and its derivatives as feed additives for farm animals. J Anim Feed Sci 7:79–93

    Google Scholar 

  • Pochini L, Scalise M, Galluccio M et al (2014) Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter LD, Ibrahim H, Taylor L et al (2002) Complexity and species variation of the kidney-type glutaminase gene. Physiol Genom 9:157–166

    Article  CAS  Google Scholar 

  • Qing GL, Li B, Vu A et al (2012) ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22:631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaglia ME, Gray-Keller MP, Frey BL et al (2005) Alpha-ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab 289:E218–E224

    Article  CAS  PubMed  Google Scholar 

  • Rademakers SE, Span PN, Kaanders JHAM et al (2008) Molecular aspects of tumour hypoxia. Mol Oncol 2:41–53

    Article  PubMed  Google Scholar 

  • Radzki RP, Bienko M, Puzio I et al (2002) The effect of alpha-ketoglutarate (AKG) on mineralization of femur in ovariectomized rats. Acta Orthoped Scand 73:52

    Google Scholar 

  • Radzki RP, Bieńko M, Puzio I et al (2003) Does alpha-ketoglutarate protect skeleton in conditions of estrogen deficiency in rats? Bone 5:223

    Google Scholar 

  • Radzki RP, Bienko M, Pierzynowski SG (2009) Effect of dietary alpha-ketoglutarate on blood lipid profile during hypercholesterolaemia in rats. Scand J Clin Lab Invest 69:175–180

    Article  CAS  PubMed  Google Scholar 

  • Ratnikov B, Jeon YJ, Smith JW et al (2015) Right on TARGET: glutamine metabolism in cancer. Oncoscience 2:681–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhoads JM, Argenzio RA, Chen WN et al (2000) Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 118:90–100

    Article  CAS  PubMed  Google Scholar 

  • Ritchie JWA, Baird FE, Christie GR et al (2001) Mechanisms of glutamine transport in rat adipocytes and acute regulation by cell swelling. Cell Physiol Biochem 11:259–270

    Article  CAS  PubMed  Google Scholar 

  • Robinson LE, Bussiere FI, Le Boucher J et al (1999) Amino acid nutrition and immune function in tumour-bearing rats: a comparison of glutamine-, arginine- and ornithine 2-oxoglutarate-supplemented diets. Clin Sci (Lond) 97:657–669

    Article  CAS  Google Scholar 

  • Robinson MM, Mcbryant SJ, Tsukamoto T et al (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 406:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe DS, Roe CR, Brivet M et al (2000) Evidence for a short-chain carnitineacylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids. Mol Genet Metab 69:69–75

    Article  CAS  PubMed  Google Scholar 

  • Roque DR, Yuan L, Wysham WZ et al (2015) The interaction between glutamine and the mTOR pathway in ovarian cancer cell proliferation and metabolism. Gynecol Oncol 137:132–133

    Article  Google Scholar 

  • Rumberger JM, Wu T, Hering MA et al (2003) Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: effect of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase and acetyl-coA carboxylase mRNA levels. J Biol Chem 278:28547–28552

    Article  CAS  PubMed  Google Scholar 

  • Rutten EPA, Engelen MPKJ, Schols AMWJ et al (2005) Skeletal muscle glutamate metabolism in health and disease: state of the art. Curr Opin Clin Nutr Metab Care 8:41–51

    Article  CAS  PubMed  Google Scholar 

  • Rzeski W, Walczak K, Juszczak M et al (2012) Alpha-ketoglutarate (AKG) inhibits proliferation of colon adenocarcinoma cells in normoxic conditions. Scand J Gastroenterol 47:565–571

    Article  CAS  PubMed  Google Scholar 

  • Sakai R, Kuwahara T, Kawamata Y et al (2011) Dietary glutamate reduced body fat but increased lean body mass in weaning rats. FASEB J 25(983):912

    Google Scholar 

  • Salabei JK, Lorkiewicz PK, Holden CR et al (2015) Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells 33:2613–2627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seltzer MJ, Bennett BD, Joshi AD et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70:8981–8987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souba WW, Herskowitz K, Austgen TR et al (1990) Glutamine nutrition: theoretical considerations and therapeutic impact. J Parenter Enter Nutr 14:S237–S243

    Article  Google Scholar 

  • Stanley CA (2009) Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr 90:862S–866S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll B, Burrin DG, Henry J et al (1999) Substrate oxidation by the drained viscere of fed piglets. Am J Physiol 277:E168–E175

    CAS  PubMed  Google Scholar 

  • Tatara MR, Brodzki A, Krupski W et al (2005a) Effects of alpha-ketoglutarate on bone homeostasis and plasma amino acids in turkeys. Poult Sci 84:1604–1609

    Article  CAS  PubMed  Google Scholar 

  • Tatara MR, Silmanowicz P, Majcher P et al (2005b) Influence of alpha-ketoglutarate on cortical bone atrophy after denervation of the humerus in turkey. B Vet I Pulawy 49:113–116

    Google Scholar 

  • Tatara MR, Krupski W, Tymczyna B et al (2012) Effects of combined maternal administration with alpha-ketoglutarate (AKG) and beta-hydroxy-beta-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring. Nutr Metab 9:39

    Article  CAS  Google Scholar 

  • Taylor AF (2002) Osteoblastic glutamate receptor function regulates bone formation and resorption. J Musculoskelet Neuronal Interact 2:285–290

    CAS  PubMed  Google Scholar 

  • Taylor L, Curthoys NP (2004) Glutamine metabolism—role in acid–base balance. Biochem Mol Biol Educ 32:291–304

    Article  CAS  PubMed  Google Scholar 

  • Tennant DA, Gottlieb E (2010) HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. J Mol Med JMM 88:839–849

    Article  CAS  Google Scholar 

  • Tennant DA, Duran RV, Boulahbel H et al (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Tocaj A, Filip R, Lindergård B et al (2003) Ketoglutarate (AKG) inhibits osteoporosis development in postmenopausal women. J Bone Miner Res 18:S267

    Google Scholar 

  • Turowski GA, Rashid Z, Hong F et al (1994) Glutamine modulates phenotype and stimulates proliferation in human colon-cancer cell-lines. Cancer Res 54:5974–5980

    CAS  PubMed  Google Scholar 

  • van der Vos KE, Eliasson P, Proikas-Cezanne T et al (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14:829–837

    Article  PubMed  CAS  Google Scholar 

  • Vanderhulst RRWJ, Vankreel BK, Vonmeyenfeldt MF et al (1993) Glutamine and the preservation of gut integrity. Lancet 341:1363–1365

    Article  CAS  Google Scholar 

  • Velvizhi S, Dakshayani KB, Subramanian P (2002) Effects of alpha-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition 18:747–750

    Article  CAS  PubMed  Google Scholar 

  • Vidya M, Subramanian P (2006) Effects of alpha-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with sodium valproate. J Appl Biomed 4:141–146

    CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL et al (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Watford M (2015) Glutamine and glutamate: nonessential or essential amino acids? Anim Nutr. doi:10.1016/j.aninu.2015.08.008

    Google Scholar 

  • Wernerman J, Hammarqvist F, Vinnars E (1990) Alpha-ketoglutarate and postoperative muscle catabolism. Lancet 335:701–703

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DJ, Hossain T, Hill DS et al (2013) Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 591:2911–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiren M, Permert J, Larsson J (2002) alpha-Ketoglutarate-supplemented enteral nutrition. Effects on postoperative nitrogen balance and muscle catabolism. Nutrition 18:725–728

    Article  CAS  PubMed  Google Scholar 

  • Wu GY (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu GY (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GY, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  CAS  PubMed  Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT et al (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci Landmark 16:578–597

    Article  CAS  Google Scholar 

  • Yang CD, Sudderth J, Dang TY et al (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69:7986–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao K, Yin YL, Li XL et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Hou YQ, Wang L et al (2015) l-Glutamine enhances enterocyte growth via activation of the mTOR signaling pathway independently of AMPK. Amino Acids 47:65–78

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Jetton TL, Goshorn S et al (2010) Transamination is required for {alpha}-ketoisocaproate but not leucine to stimulate insulin secretion. J Biol Chem 285:33718–33726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Lin G, Dai Z et al (2015) l-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids 47:2185–2197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the National Natural Science Foundation of China (31301985, 31472107, 31372326), the National Key Basic Research Program of China (2013CB127306), the China Postdoctoral Science Foundation (2014M562111, 2015T80871) and the Science and Technology Department of Hunan province (2015RS4035, 2015JC3126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Yao or Yulong Yin.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical statement

The manuscript has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full), unless the new work concerns an expansion of previous work [please provide transparency on the re-use of material to avoid the hint of text-recycling (“self-plagiarism”)]. A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g. “salami-publishing”). No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”).

Statement of human rights and the welfare of animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Handling Editor: C.-A. A. Hu.

D. Xiao and L. Zeng contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Zeng, L., Yao, K. et al. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48, 2067–2080 (2016). https://doi.org/10.1007/s00726-016-2254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2254-8

Keywords

Navigation