Amino Acids

, Volume 48, Issue 8, pp 1793–1805 | Cite as

Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain

  • Bruno GualanoEmail author
  • Eric S. Rawson
  • Darren G. Candow
  • Philip D. Chilibeck
Review Article
Part of the following topical collections:
  1. Creatine


This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.


Dietary supplement Exercise Bone, skeletal muscle, brain Elderly 



Bruno Gualano is financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Pesquisa e Tecnologia (CNPq) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interests

Bruno Gualano, Eric Rawson, and Darren G. Candow received financial support from Alzchem (Germany) for attending the scientific conference “Creatine in Health, Sport and Medicine 2015”. Bruno Gualano has also received a research grant from Alzchem for studies involving creatine supplementation. At the time this manuscript was prepared, Eric S. Rawson was a member of the Gatorade Sports Science Institute Expert Panel.


  1. Aguiar AF, Januário RS, Junior RP, Gerage AM, Pina FL, do Nascimento MA, Padovani CR, Cyrino ES (2013) Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol 113:987–996. doi: 10.1007/s00421-012-2514-6 PubMedCrossRefGoogle Scholar
  2. Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36(5):1442–1462PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH Jr, Gualano B (2012a) Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-alpha? Amino Acids 43:1803–1807. doi: 10.1007/s00726-012-1246-6 PubMedCrossRefGoogle Scholar
  4. Alves CR, Murai IH, Ramona P, Nicastro H, Takayama L, Guimarães F, Lancha Junior AH, Irigoyen MC, Pereira RM, Gualano B (2012b) Influence of creatine supplementation on bone mass of spontaneously hypertensive rats. Braz J Rheumatol 52(3):453–461Google Scholar
  5. Alves CR, Merege Filho CA, Benatti FB, Brucki S, Pereira RM, de Sa Pinto AL, Lima FR, Roschel H, Gualano B (2013) Creatine supplementation associated or not with strength training upon emotional and cognitive measures in older women: a randomized double-blind study. PLoS One 8(10):e76301PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antolic A, Roy BD, Tarnopolsky MA et al (2007) Creatine monohydrate increases bone mineral density in young Sprague-Dawley rats. Med Sci Sports Exerc 39(5):816–820PubMedCrossRefGoogle Scholar
  7. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14:542–559. doi: 10.1016/j.jamda.2013.05.021 PubMedCrossRefGoogle Scholar
  8. Beard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115(2):297–313PubMedCrossRefGoogle Scholar
  9. Beck TJ, Kohlmeier LA, Petit MA, Wu G, Leboff MS, Cauley JA, Nicholas S, Chen Z (2011) Confounders in the association between exercise and femur bone in postmenopausal women. Med Sci Sports Exerc 43:80–89PubMedCrossRefGoogle Scholar
  10. Bemben MG, Witten MS, Carter JM, Eliot KA, Knehans AW, Bemben DA (2010) The effects of supplementation with creatine and protein on muscle strength following a traditional resistance training program in middle-aged and older men. J Nutr Health Aging 14:155–159PubMedCrossRefGoogle Scholar
  11. Benton D, Donohoe R (2011) The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr 105(7):1100–1105PubMedCrossRefGoogle Scholar
  12. Bermon S, Venembre P, Sachet C, Valour S, Dolisi C (1998) Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol Scand 164:147–155. doi: 10.1046/j.1365-201X.1998.00427.x PubMedCrossRefGoogle Scholar
  13. Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood–cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664PubMedCrossRefGoogle Scholar
  14. Branch JD (2003) Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab 13:198–226PubMedGoogle Scholar
  15. Breen L, Phillips SM (2011) Skeletal muscle protein metabolism in the elderly: interventions to counteract the ‘anabolic resistance’ of ageing. Nutr Metab (Lond) 8:68. doi: 10.1186/1743-7075-8-68 CrossRefGoogle Scholar
  16. Brose A, Parise G, Tarnopolsky MA (2003) Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci 58:11–19PubMedCrossRefGoogle Scholar
  17. Burke DG, Candow DG, Chilibeck PD, MacNeil LG, Roy BD, Tarnopolsky MA, Ziegenfuss T (2008) Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int J Sport Nutr Exerc Metab 18:389–398PubMedGoogle Scholar
  18. Candow DG et al (2008) Low-dose creatine combined with protein during resistance training in older men. Med Sci Sports Exerc 40:1645–1652. doi: 10.1249/MSS.0b013e318176b310 PubMedCrossRefGoogle Scholar
  19. Chang EJ, Ha J, Oerlemans F, Lee YJ, Lee SW, Ryu J, Kim HJ, Lee Y, Kim HM, Choi JY, Kim JY, Shin CS, Pak YK, Tanaka S, Wieringa B, Lee ZH, Kim HH (2008) Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nat Med 14:966–972. doi: 10.1038/nm.1860 PubMedCrossRefGoogle Scholar
  20. Chilibeck P, Calder A, Sale DG, Webber C (1994) Reproducibility of dual-energy X-ray absorptiometry. Can Assoc Radiol J 45(4):297–302PubMedGoogle Scholar
  21. Chilibeck PD, Chrusch MJ, Chad KE et al (2005) Creatine monohydrate and resistance training increase bone mineral content and density in older men. J Nutr Health Aging 9(5):352–355PubMedGoogle Scholar
  22. Chilibeck PD, Vatanparast H, Pierson R, Case A, Olatunbosun O, Whiting SJ, Beck TJ, Pahwa P, Biem HJ (2013) Effect of exercise training combined with isoflavone supplementation on bone and lipids in postmenopausal women: a randomized clinical trial. J Bone Miner Res 28(4):780–793PubMedCrossRefGoogle Scholar
  23. Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L (2015) Effects of creatine and resistance training on bone health in postmenopausal women. Med Sci Sports Exerc. 47(8):1587–1595PubMedCrossRefGoogle Scholar
  24. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG (2001) Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 33(12):2111–2117PubMedCrossRefGoogle Scholar
  25. Collins J, Longhurst G, Roschel H, Gualano B (2016) Resistance training and co-supplementation with creatine and protein in older subjects with frailty. J Frailty Aging (in press)Google Scholar
  26. Cornish SM, Candow DG, Jantz NT et al (2009) Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc Metab 19(1):79–96PubMedGoogle Scholar
  27. Dangott B, Schultz E, Mozdziak PE (2000) Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med 21:13–16. doi: 10.1055/s-2000-8848 PubMedCrossRefGoogle Scholar
  28. de Souza RA, Xavier M, da Silva FF, de Souza MT, Tosato MG, Martin AA, Castilho JC, Ribeiro W, Silveira L Jr (2012) Lasers Influence of creatine supplementation on bone quality in the ovariectomized rat model: an FT-Raman spectroscopy study. Med Sci 27(2):487–495Google Scholar
  29. Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704PubMedGoogle Scholar
  30. Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M (2005) Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc 37:731–736PubMedCrossRefGoogle Scholar
  31. Devries MC, Phillips SM (2014) Creatine supplementation during resistance training in older adults—a meta-analysis. Med Sci Sports Exerc 46:1194–1203. doi: 10.1249/MSS.0000000000000220 PubMedCrossRefGoogle Scholar
  32. Edmunds JW, Jayapalan S, DiMarco NM, Saboorian MH, Aukema HM (2001) Creatine supplementation increases renal disease progression in Han:SPRD-cy rats. Am J Kidney Dis 37:73–78PubMedCrossRefGoogle Scholar
  33. Eijnde BO, Van Leemputte M, Goris M, Labarque V, Taes Y, Verbessem P, Vanhees L, Ramaekers M, Vanden Eynde B, Van Schuylenbergh R, Dom R, Richter EA, Hespel P (2003) Effects of creatine supplementation and exercise training on fitness in men 55–75 years old. J Appl Physiol 95:818–828. doi: 10.1152/japplphysiol.00891.200200891.2002 PubMedCrossRefGoogle Scholar
  34. Eliot KA, Knehans AW, Bemben DA, Witten MS, Carter J, Bemben MG (2008) The effects of creatine and whey protein supplementation on body composition in men aged 48 to 72 years during resistance training. J Nutr Health Aging 12:208–212PubMedCrossRefGoogle Scholar
  35. Ferri A, Scaglioni G, Pousson M, Capodaglio P, Van Hoecke J, Narici MV (2003) Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiol Scand 177:69–78. doi: 10.1046/j.1365-201X.2003.01050.x PubMedCrossRefGoogle Scholar
  36. Forsberg AM, Nilsson E, Werneman J, Bergstrom J, Hultman E (1991) Muscle composition in relation to age and sex. Clin Sci (Lond) 81:249–256CrossRefGoogle Scholar
  37. Gerber I, Ap Gwynn I, Alini M et al (2005) Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater 15:108–122Google Scholar
  38. Gotshalk LA, Kraemer WJ, Mendonca MA, Vingren JL, Kenny AM, Spiering BA, Hatfield DL, Fragala MS, Volek JS (2008) Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol 102:223–231. doi: 10.1007/s00421-007-0580-y PubMedCrossRefGoogle Scholar
  39. Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH (2009) Exploring the therapeutic role of creatine supplementation. Amino Acids. doi: 10.1007/s00726-009-0263-6 PubMedGoogle Scholar
  40. Gualano B, De Salles Painneli V, Roschel H, Artioli GG, Neves M Jr, De Sá Pinto AL, Da Silva ME, Cunha MR, Otaduy MC, Leite Cda C, Ferreira JC, Pereira RM, Brum PC, Bonfá E, Lancha AH Jr (2010) Creatine in Type 2 Diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc. doi: 10.1249/MSS.0b013e3181fcee7d Google Scholar
  41. Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi: 10.1007/s00726-011-1132-7 PubMedCrossRefGoogle Scholar
  42. Gualano B, Macedo AR, Alves CR, Roschel H, Benatti FB, Takayama L, de Sá Pinto AL, Lima FR, Pereira RM (2014) Creatine supplementation and resistance training in vulnerable older women: a randomized double-blind placebo-controlled clinical trial. Exp Gerontol 53:7–15. doi: 10.1016/j.exger.2014.02.003 PubMedCrossRefGoogle Scholar
  43. Guimbal C, Kilimann M (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268:8418–8421PubMedGoogle Scholar
  44. Hammett ST, Wall MB, Edwards TC, Smith AT (2010) Dietary supplementation of creatine monohydrate reduces the human fMRI BOLD signal. Neurosci Lett 479:201–205PubMedCrossRefGoogle Scholar
  45. Harris RC, Söderlund K (1992) Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatinesupplementation. Clin Sci (Lond) 83:367–374CrossRefGoogle Scholar
  46. Hayashi AP, Solis MY, Sapienza MT, Otaduy MC, de Sá Pinto AL, Silva CA, Sallum AM, Pereira RM, Gualano B (2014) Efficacy and safety of creatine supplementation in childhood-onset systemic lupus erythematosus: a randomized, double-blind, placebo-controlled, crossover trial. Lupus 23(14):1500–1511. doi: 10.1177/0961203314546017 PubMedCrossRefGoogle Scholar
  47. Hellem TL, Sung YW, Shi XF, Pett MA, Latendresse G, Morgan J, Huber RS, Kuykendall D, Lundberg KJ, Renshaw PF (2015) Creatine as a novel treatment for depression in females using methamphetamine: a pilot study. J Dual Diagn 11(3–4):189–202PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hogan DB, MacKnight C, Bergman H (2003) Models, definitions, and criteria of frailty. Aging Clin Exp Res 15:1–29PubMedCrossRefGoogle Scholar
  49. Jakobi JM, Rice CL, Curtin SV, Marsh GD (2001) Neuromuscular properties and fatigue in older men following acute creatine supplementation. Eur J Appl Physiol 84:321–328PubMedCrossRefGoogle Scholar
  50. Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26(4):223–230PubMedCrossRefGoogle Scholar
  51. Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078PubMedGoogle Scholar
  52. Kim HJ, Kim CK, Carpentier A, Poortmans JR (2011) Studies on the safety of creatine supplementation. Amino Acids 40(5):1409–1418PubMedCrossRefGoogle Scholar
  53. Kondo DG, Sung YH, Hellem TL, Fiedler KK, Shi X, Jeong EK, Renshaw PF (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135(1–3):354–361PubMedPubMedCentralCrossRefGoogle Scholar
  54. Laakso MP, Hiltunen Y, Kononen M, Kivipelto M, Koivisto A, Hallikainen M, Soininen H (2003) Decreased brain creatine levels in elderly apolipoprotein E epsilon 4 carriers. J Neural Transm 110(3):267–275PubMedCrossRefGoogle Scholar
  55. Leibbrandt A, Penninger JM (2009) RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol 647:130–145PubMedCrossRefGoogle Scholar
  56. Ling J, Kritikos M, Tiplady B (2009) Cognitive effects of creatine ethyl ester supplementation. Behav Pharmacol 20(8):673–679PubMedCrossRefGoogle Scholar
  57. Lobo DM, Tritto AC, da Silva LR, de Oliveira PB, Benatti FB, Roschel H, Nieß B, Gualano B, Pereira RM (2015) Effects of long-term low-dose dietary creatine supplementation in older women. Exp Gerontol 70:97–104PubMedCrossRefGoogle Scholar
  58. Louis M, Poortmans JR, Francaux M, Berré J, Boisseau N, Brassine E, Cuthbertson DJ, Smith K, Babraj JA, Waddell T, Rennie MJ (2003a) No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am J Physiol Endocrinol Metab 285:E1089–E1094. doi: 10.1152/ajpendo.00195.2003 PubMedCrossRefGoogle Scholar
  59. Louis M, Poortmans JR, Francaux M, Hultman E, Berre J, Boisseau N, Young VR, Smith K, Meier-Augenstein W, Babraj JA, Waddell T, Rennie MJ (2003b) Creatine supplementation has no effect on human muscle protein turnover at rest in the postabsorptive or fed states. Am J Physiol Endocrinol Metab 284:E764–E770. doi: 10.1152/ajpendo.00338.2002 PubMedCrossRefGoogle Scholar
  60. Louis M, Lebacq J, Poortmans JR, Belpaire-Dethiou MC, Devogelaer JP, Van Hecke P, Goubel F, Francaux M (2003c) Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 27(5):604–610PubMedCrossRefGoogle Scholar
  61. Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, Cohen BM, Renshaw PF (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100PubMedCrossRefGoogle Scholar
  62. McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, Dye L, Hodgson C, Draper N (2006) Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology (Berl) 185:93–103CrossRefGoogle Scholar
  63. McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A (2007a) Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 14(5):517–528PubMedCrossRefGoogle Scholar
  64. McMorris T, Harris RC, Howard AN, Langridge G, Hall B, Corbett J, Dicks M, Hodgson C (2007b) Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol Behav 90(1):21–28PubMedCrossRefGoogle Scholar
  65. Moller P, Bergstrom J, Furst P, Hellstrom K (1980) Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin Sci (Lond) 58:553–555CrossRefGoogle Scholar
  66. Murai IH, Roschel H, Pabis LV, Takayama L, de Oliveira RB, Dos Santos Pereira RT, Dantas WS, Pereira RM, Jorgetti V, Ballester RY, Gualano B (2015) Exercise training, creatine supplementation, and bone health in ovariectomized rats. Osteoporos Int 26(4):1395–1404PubMedCrossRefGoogle Scholar
  67. Naclerio F, Larumbe-Zabala E (2015) Effects of whey protein alone or as part of a multi-ingredient formulation on strength, fat-free mass, or lean body mass in resistance-trained individuals: a meta-analysis. Sports Med. doi: 10.1007/s40279-015-0403-y Google Scholar
  68. Neves M Jr, Gualano B, Roschel H, Fuller R, Benatti FB, Pinto AL, Lima FR, Pereira RM, Lancha AH Jr, Bonfá E (2011) Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 43:1538–1543. doi: 10.1249/MSS.0b013e3182118592 PubMedCrossRefGoogle Scholar
  69. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534CrossRefGoogle Scholar
  70. Öngur D, Prescot AP, Jensen JE, Cohen BM, Renshaw PF (2009) Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res 172(1):44–48PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pan JW, Takahashi K (2007) Cerebral energetic effects of creatine supplementation in humans. Am J Physiol Regul Integr Comp Physiol 292(4):R1745–R1750PubMedCrossRefGoogle Scholar
  72. Parise G, Mihic S, MacLennan D, Yarasheski KE, Tarnopolsky MA (2001) Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol 91:1041–1047PubMedGoogle Scholar
  73. Persky AM, Rawson ES (2007) Safety of creatine supplementation. Subcell Biochem 46:275–289PubMedCrossRefGoogle Scholar
  74. Rae CD, Broer S (2015) Creatine as a booster for human brain function. How might it work? Neurochem Int 89:249–259PubMedCrossRefGoogle Scholar
  75. Rae C, Digney AL, McEwan RR, Bates TC (2003) Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc R Soc Lond B Biol Sci 270(1529):2147–2150CrossRefGoogle Scholar
  76. Rawson ES, Clarkson PM (2000) Acute creatine supplementation in older men. Int J Sports Med 21:71–75. doi: 10.1055/s-2000-8859 PubMedCrossRefGoogle Scholar
  77. Rawson ES, Venezia AC (2011) Use of creatine in the elderly and evidence for effects on cognitive function in young and old Amino Acids 40:1349–1362. doi: 10.1007/s00726-011-0855-9 Google Scholar
  78. Rawson ES, Wehnert ML, Clarkson PM (1999) Effects of 30 days of creatine ingestion in older men. Eur J Appl Physiol Occup Physiol 80:139–144PubMedCrossRefGoogle Scholar
  79. Rawson ES, Clarkson PM, Price TB, Miles MP (2002) Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol Scand 174:57–65PubMedCrossRefGoogle Scholar
  80. Rawson ES, Lieberman HR, Walsh TM, Zuber SM, Harhart JM, Matthews TC (2008) Creatine supplementation does not improve cognitive function in young adults. Physiol Behav 95(1–2):130–134PubMedCrossRefGoogle Scholar
  81. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, Blair SN (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439PubMedPubMedCentralCrossRefGoogle Scholar
  82. Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA (2008) Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 32:219–228CrossRefGoogle Scholar
  83. Smith SA, Montain SJ, Matott RP, Zientara GP, Jolesz FA, Fielding RA (1998) Creatine supplementation and age influence muscle metabolism during exercise. J Appl Physiol 85:1349–1356PubMedGoogle Scholar
  84. Stout JR, Sue Graves B, Cramer JT, Goldstein ER, Costa PB, Smith AE, Walter AA (2007) Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64–86 years). J Nutr Health Aging 11:459–464PubMedGoogle Scholar
  85. Syrotuik DG, Bell GJ (2004) Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res 18:610–617. doi: 10.1519/12392.1 PubMedGoogle Scholar
  86. Syrotuik DG, Bell GJ, Burnham R, Sim LL, Calvert RA, McLean IM (2000) Absolute and relative strength performance following creatine monohydrate supplementation combined with periodized resistance training. Strength Cond Res 14:182Google Scholar
  87. Tarnopolsky MA, Bourgeois JM, Snow R, Keys S, Roy BD, Kwiecien JM, Turnbull J (2003a) Histological assessment of intermediate- and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol Regul Integr Comp Physiol 285:R762–R769PubMedCrossRefGoogle Scholar
  88. Tarnopolsky M, Parise G, Fu MH, Brose A, Parshad A, Speer O, Wallimann T (2003b) Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol Cell Biochem 244:159–166PubMedCrossRefGoogle Scholar
  89. Tarnopolsky MA, Mahoney DJ, Vajsar J et al (2004) Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62(10):1771–1777PubMedCrossRefGoogle Scholar
  90. Tarnopolsky M, Zimmer A, Paikin J et al (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2:e991. doi: 10.1371/journal.pone.0000991 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tesch PA, Thorsson A, Fujitsuka N (1989) Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J Appl Physiol 66:1756–1759PubMedGoogle Scholar
  92. Tieland M, Dirks ML, van der Zwaluw N, Verdijk LB, van de Rest O, de Groot LC, van Loon LJ (2012) Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 13:713–719. doi: 10.1016/j.jamda.2012.05.020 PubMedCrossRefGoogle Scholar
  93. Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707. doi: 10.1056/NEJM198812293192604 PubMedCrossRefGoogle Scholar
  94. Turner CE, Byblow WD, Gant N (2015) Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci 35(4):1773–1780PubMedCrossRefGoogle Scholar
  95. Valenzuela MJ, Jones M, Wen W, Rae C, Graham S, Shnier R, Sachdev P (2003) Memory training alters hippocampal neurochemistry in healthy elderly. Neuroreport 14(10):1333–1337PubMedCrossRefGoogle Scholar
  96. Vierck JL, Icenoggle DL, Bucci L, Dodson MV (2003) The effects of ergogenic compounds on myogenic satellite cells. Med Sci Sports Exerc 35:769–776. doi: 10.1249/01.MSS.0000065005.96298.01 PubMedCrossRefGoogle Scholar
  97. Villanueva MG, He J, Schroeder ET (2014) Periodized resistance training with and without supplementation improve body composition and performance in older men. Eur J Appl Physiol 114:891–905. doi: 10.1007/s00421-014-2821-1 PubMedCrossRefGoogle Scholar
  98. Wall BT, Cermak NM, van Loon LJ (2014) Dietary protein considerations to support active aging. Sports Med 44(Suppl 2):S185–S194. doi: 10.1007/s40279-014-0258-7 PubMedCrossRefGoogle Scholar
  99. Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134:193–220PubMedCrossRefGoogle Scholar
  100. Wallimann T, Turner DC, Eppenberger HM (1977) Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol 75:297–317PubMedCrossRefGoogle Scholar
  101. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296. doi: 10.1007/s00726-011-0877-3 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Watanabe A, Kato N, Kato T (2002) Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res 42(4):279–285PubMedCrossRefGoogle Scholar
  104. Wilkinson ID, Mitchel N, Breivik S, Greenwood P, Griffiths PD, Winter EM, Van Beek E (2006) Effects of creatine supplementation on cerebral white matter in competitive sportsmen. Clin J Sport Med 16(1):63–67PubMedCrossRefGoogle Scholar
  105. Wilkinson TJ et al (2015) Can creatine supplementation improve body composition and objective physical function in rheumatoid arthritis patients? A randomised controlled trial. Arthritis Care Res (Hoboken). doi: 10.1002/acr.22747 Google Scholar
  106. Willoughby DS, Rosene JM (2003) Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 35:923–929. doi: 10.1249/01.MSS.0000069746.05241.F0 PubMedCrossRefGoogle Scholar
  107. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  108. Yasuda H, Shima N, Nakagawa N et al (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139(3):1329–1337PubMedGoogle Scholar
  109. Yazigi Solis M, de Salles Painelli V, Artioli GG, Roschel H, Otaduy MC, Gualano B (2014) Brain creatine depletion in vegetarians? A cross-sectional (1)H-magnetic resonance spectroscopy ((1)H-MRS) study. Br J Nutr 111(7):1272–1274PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Bruno Gualano
    • 1
    Email author
  • Eric S. Rawson
    • 2
  • Darren G. Candow
    • 3
  • Philip D. Chilibeck
    • 4
  1. 1.Applied Physiology in Nutrition, Exercise and Genetics Research GroupUniversity of Sao PauloSao PauloBrazil
  2. 2.Department of Exercise ScienceBloomsburg UniversityBloomsburgUSA
  3. 3.Faculty of Kinesiology and Health StudiesUniversity of ReginaReginaCanada
  4. 4.College of KinesiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations