Amino Acids

, Volume 48, Issue 8, pp 1993–2001 | Cite as

Exploratory studies of the potential anti-cancer effects of creatine

  • P. L. Campos-Ferraz
  • B. Gualano
  • W. das Neves
  • I. T. Andrade
  • I. Hangai
  • R. T. S. Pereira
  • R. N. Bezerra
  • R. Deminice
  • M. Seelaender
  • A. H. Lancha
Original Article
Part of the following topical collections:
  1. Creatine

Abstract

Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 107 tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p < 0.0001). Blood pCO2 was higher in CT and CR than PL (p = 0.0007 and p = 0.004, respectively). HCO3 was augmented in CT compared to PL (p = 0.03) and CR (p = 0.001). Plasma IL-6 was lower and IL-10 level was higher in CR than PL (p = 0.03 and p = 0.0007, respectively) and TNF-alpha featured a tendency of decrease in CR compared to PL (p = 0.08). Additionally, total antioxidant capacity tended to be lower in CT than PL (p = 0.07). Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms of action in malignancies.

Keywords

Diet Supplementation Tumor Malignancy 

Abbreviations

CK

Creatine kinase

pCO2

CO2 partial pressure

IL-6

Interleukin 6

HCO3

Bicarbonate

IL-10

Interleukin 10

Notes

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 12/02682-9;12/50079-0).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Research involving animals

Our experimental protocol has been approved by the local Ethics Committee on Research (Of. CEP/03511/EEFE/30.05.2011). This study was conducted under the standards of the Brazilian College of Animal Experimentation (COBEA).

References

  1. Alves C et al (2012) No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats. J Int Soc Sports Nutr 9:1–4. doi: 10.1186/1550-2783-9-13 CrossRefGoogle Scholar
  2. Avila-Díaz M et al (2006) Inflammation and extracellular volume expansion are related to sodium and water removal in patients on peritoneal dialysis. Perit Dial Int 26:574–580PubMedGoogle Scholar
  3. Barros M et al (2012) Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test. J Int Soc Sports Nutr 9:25–34. doi: 10.1186/1550-2783-9-25 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bassit RA, Curi R, Costa Rosa LF (2008) Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 35:425–431. doi: 10.1007/s00726-007-0582-4 CrossRefPubMedGoogle Scholar
  5. Bera S, Wallimann T, Ray S, Ray M (2008) Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells. FEBS J 275:5899–5909. doi: 10.1111/j.1742-4658.2008.06718.x CrossRefPubMedGoogle Scholar
  6. Bergnes G, Yuan W, Khandekar V, OKeefe M, Martin K, Teicher B, KaddurahDaouk R (1996) Creatine and phosphocreatine analogs: anticancer activity and enzymatic analysis. Oncol Res 8:121–130PubMedGoogle Scholar
  7. Bodin P, Burnstock G (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47:351–354CrossRefPubMedGoogle Scholar
  8. Breit S et al (2011) The TGF-beta superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 29:187–195. doi: 10.3109/08977194.2011.607137 CrossRefPubMedGoogle Scholar
  9. Carr BM, Webster MJ, Boyd JC, Hudson GM, Scheett TP (2013) Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol 113:743–752. doi: 10.1007/s00421-012-2484-8 CrossRefPubMedGoogle Scholar
  10. Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794. doi: 10.1111/j.1582-4934.2009.00994.x CrossRefPubMedGoogle Scholar
  11. Chiche J, Ricci JE, Pouysségur J (2013) Tumor hypoxia and metabolism—towards novel anticancer approaches. Ann Endocrinol (Paris) 74:111–114. doi: 10.1016/j.ando.2013.02.004 CrossRefGoogle Scholar
  12. Cooper R, Naclerio F, Allgrove J, Jimenez A (2012) Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 9:33. doi: 10.1186/1550-2783-9-33 CrossRefPubMedPubMedCentralGoogle Scholar
  13. DeLuca M, Hall N, Rice R, Kaplan NO (1981) Creatine kinase isozymes in human tumors. Biochem Biophys Res Commun 99:189–195CrossRefPubMedGoogle Scholar
  14. Deminice R, Jordao A (2012) Creatine supplementation reduces oxidative stress biomarkers after acute exercise in rats. Amino Acids 43:709–715. doi: 10.1007/s00726-011-1121-x CrossRefPubMedGoogle Scholar
  15. Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC (2013) Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 29:1127–1132. doi: 10.1016/j.nut.2013.03.003 CrossRefPubMedGoogle Scholar
  16. Goldszmid RS, Dzutsev A, Trinchieri G (2014) Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15:295–305. doi: 10.1016/j.chom.2014.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gualano B et al (2008) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250. doi: 10.1007/s00726-007-0508-1 CrossRefPubMedGoogle Scholar
  18. Gualano B, Roschel H, Lancha A, Brightbill C, Rawson E (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi: 10.1007/s00726-011-1132-7 CrossRefPubMedGoogle Scholar
  19. Guimaraes-Ferreira L, Pinheiro C, Gerlinger-Romero F, Vitzel K, Nachbar R, Curi R, Nunes M (2012) Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur J Appl Physiol 112:3905–3911. doi: 10.1007/s00421-012-2378-9 CrossRefPubMedGoogle Scholar
  20. Koetting J, Henninger C, Drevs A, MaierLenz H, Sonntag O (1996) Activity of creatine-kinase (CK) and subunit CK-MB in patients with different high malignant tumor diseases. Clin Chem 42:674Google Scholar
  21. Kornacker M et al (2001) Hodgkin disease-derived cell lines expressing ubiquitous mitochondrial creatine kinase show growth inhibition by cyclocreatine treatment independent of apoptosis. Int J Cancer 94:513–519CrossRefPubMedGoogle Scholar
  22. Kristensen CA, Askenasy N, Jain RK, Koretsky AP (1999) Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies. Br J Cancer 79:278–285. doi: 10.1038/sj.bjc.6690045 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lillie JW, O’Keefe M, Valinski H, Hamlin HA, Varban ML, Kaddurah-Daouk R (1993) Cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors. Cancer Res 53:3172–3178PubMedGoogle Scholar
  24. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583. doi: 10.1038/nrc3557 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Machado AP, Costa Rosa LF, Seelaender MC (2004) Adipose tissue in Walker 256 tumour-induced cachexia: possible association between decreased leptin concentration and mononuclear cell infiltration. Cell Tissue Res 318:503–514. doi: 10.1007/s00441-004-0987-2 CrossRefPubMedGoogle Scholar
  26. Martin K, Chen S, Clark G, Degen D, Wajima M, Vonhoff D, Kaddurahdaouk R (1994) Evaluation of creatine analogs as a new class of anticancer agents using freshly explanted human tumor-cells. J Natl Cancer Inst 86:608–613. doi: 10.1093/jnci/86.8.608 CrossRefPubMedGoogle Scholar
  27. Miller E, Evans A, Cohn M (1993) Inhibition of rate of tumor-growth by creatine and cyclocreatine. Proc Natl Acad Sci USA 90:3304–3308CrossRefPubMedPubMedCentralGoogle Scholar
  28. Muller L, Gnoyke S, Popken A, Bohm V (2010) Antioxidant capacity and related parameters of different fruit formulations. LWT Food Sci Technol 43:7CrossRefGoogle Scholar
  29. Nicastro H et al (2012) Effects of creatine supplementation on muscle wasting and glucose homeostasis in rats treated with dexamethasone. Amino Acids 42:1695–1701. doi: 10.1007/s00726-011-0871-9 CrossRefPubMedGoogle Scholar
  30. Niu KY, Ro JY (2011) Changes in intramuscular cytokine levels during masseter inflammation in male and female rats. Neurosci Lett 487:223–227. doi: 10.1016/j.neulet.2010.10.027 CrossRefPubMedGoogle Scholar
  31. Nuzzo R (2014) Scientific method: statistical errors. Nature 506:150–152. doi: 10.1038/506150a CrossRefPubMedGoogle Scholar
  32. Nuzzo RL (2015) The inverse fallacy and interpreting P values. PMR J 7:311–314. doi: 10.1016/j.pmrj.2015.02.011 Google Scholar
  33. Ohira Y, Inoue N (1995) Effects of creatine and beta-guanidinopropionic acid on the growth of Erlich ascites tumor-cells—IP injection and culture study. Biochim Biophys Acta Gen Subj 1243:367–372. doi: 10.1016/0304-4165(94)00161-P CrossRefGoogle Scholar
  34. Onda T, Uzawa K, Endo Y, Bukawa H, Yokoe H, Shibahara T, Tanzawa H (2006) Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br J Cancer 94:698–709. doi: 10.1038/sj.bjc.6602986 PubMedPubMedCentralGoogle Scholar
  35. Patra S et al (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275:3236–3247. doi: 10.1111/j.1742-4658.2008.06475.x CrossRefPubMedGoogle Scholar
  36. Patra S et al (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330. doi: 10.1007/s00726-011-0974-3 CrossRefPubMedGoogle Scholar
  37. Pereira RT, Porto CS, Abdalla FM (2014) Ovariectomy and 17β-estradiol replacement play a role on the expression of endonuclease-G and phosphorylated cyclic AMP response element-binding (CREB) protein in hippocampus. Mol Cell Endocrinol 382:227–233. doi: 10.1016/j.mce.2013.09.037 CrossRefPubMedGoogle Scholar
  38. Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF (2004) The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci 75:1917–1924. doi: 10.1016/j.lfs.2003.11.036 CrossRefPubMedGoogle Scholar
  39. Sestili P et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849. doi: 10.1016/j.freeradbiomed.2005.10.035 CrossRefPubMedGoogle Scholar
  40. Shatton JB, Morris HP, Weinhouse S (1979) Creatine kinase activity and isozyme composition in normal tissues and neoplasms of rats and mice. Cancer Res 39:492–501PubMedGoogle Scholar
  41. Smith AE, Fukuda DH, Ryan ED, Kendall KL, Cramer JT, Stout J (2011) Ergolytic/ergogenic effects of creatine on aerobic power. Int J Sports Med 32:975–981. doi: 10.1055/s-0031-1283179 CrossRefPubMedGoogle Scholar
  42. Tang FC, Chan CC, Kuo PL (2013) Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. Eur J Nutr. doi: 10.1007/s00394-013-0498-6 Google Scholar
  43. Tarnopolsky MA, Bourgeois JM, Snow R, Keys S, Roy BD, Kwiecien JM, Turnbull J (2003) Histological assessment of intermediate- and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol Regul Integr Comp Physiol 285:R762–R769. doi: 10.1152/ajpregu.00270.2003 CrossRefPubMedGoogle Scholar
  44. Tayek JA, Istfan NW, Jones CT, Hamawy KJ, Bistrian BR, Blackburn GL (1986) Influence of the Walker 256 carcinosarcoma on muscle, tumor, and whole-body protein synthesis and growth rate in the cancer-bearing rat. Cancer Res 46:5649–5654PubMedGoogle Scholar
  45. Tokarska-Schlattner M et al (2012) Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One 7:e43178. doi: 10.1371/journal.pone.0043178 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296. doi: 10.1007/s00726-011-0877-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • P. L. Campos-Ferraz
    • 1
    • 2
  • B. Gualano
    • 1
  • W. das Neves
    • 1
  • I. T. Andrade
    • 1
    • 2
  • I. Hangai
    • 1
    • 3
  • R. T. S. Pereira
    • 1
  • R. N. Bezerra
    • 2
  • R. Deminice
    • 5
  • M. Seelaender
    • 4
    • 6
  • A. H. Lancha
    • 1
  1. 1.School of Physical Education and Sport, Department of BiodynamicsUniversity of São PauloSão PauloBrazil
  2. 2.Faculty of Applied SciencesState University of CampinasLimeiraBrazil
  3. 3.Faculty of Public HealthUniversity of Sao PauloSão PauloBrazil
  4. 4.Institute of Biomedical SciencesUniversity of Sao PauloSão PauloBrazil
  5. 5.Department of Physical EducationState University of LondrinaLondrinaBrazil
  6. 6.Faculty of MedicineUniversity of Sao PauloSão PauloBrazil

Personalised recommendations