Amino Acids

, Volume 48, Issue 8, pp 1929–1940 | Cite as

Creatine for neuroprotection in neurodegenerative disease: end of story?

  • Andreas Bender
  • Thomas Klopstock
Review Article
Part of the following topical collections:
  1. Creatine


Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases.


Creatine Neuroprotection Neurodegenerative disease Mitochondrial dysfunction 


Compliance with ethical standards

Conflict of interest

AB and TK were invited speakers with travel grants at creatine conferences, sponsored by one of the creatine manufacturers, Alzchem, Trostberg, Germany.

Ethical standard statement

This review article does not contain any studies with human participants performed by any of the authors.

Informed consent statement

The authors of this review article did not perform research on participants. Obtaining informed consent was therefore not applicable.


  1. Ahlskog JE (2007) I can’t get no satisfaction: still no neuroprotection for Parkinson disease. Neurology 69(15):1476–1477. doi: 10.1212/01.wnl.0000277645.60799.0e CrossRefPubMedGoogle Scholar
  2. Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF (2012) Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav 101(4):588–601. doi: 10.1016/j.pbb.2012.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling G, Borchelt DR, Hersch SM, Ross CA, Beal MF (2001a) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis 8(3):479–491CrossRefPubMedGoogle Scholar
  4. Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R, Beal MF (2001b) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77(2):383–390CrossRefPubMedGoogle Scholar
  5. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343. doi: 10.1016/j.brainresbull.2008.02.035 CrossRefPubMedGoogle Scholar
  6. Atassi N, Ratai EM, Greenblatt DJ, Pulley D, Zhao Y, Bombardier J, Wallace S, Eckenrode J, Cudkowicz M, Dibernardo A (2010) A phase I, pharmacokinetic, dosage escalation study of creatine monohydrate in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11(6):508–513. doi: 10.3109/17482961003797130 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balestrino M, Lensman M, Parodi M, Perasso L, Rebaudo R, Melani R, Polenov S, Cupello A (2002) Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23(1–3):221–229. doi: 10.1007/s00726-001-0133-3 CrossRefPubMedGoogle Scholar
  8. Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40(5):1305–1313. doi: 10.1007/s00726-011-0851-0 CrossRefPubMedGoogle Scholar
  9. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13(10):4181–4192PubMedGoogle Scholar
  10. Bender A, Auer DP, Merl T, Reilmann R, Saemann P, Yassouridis A, Bender J, Weindl A, Dose M, Gasser T, Klopstock T (2005) Creatine supplementation lowers brain glutamate levels in Huntington’s disease. J Neurol 252(1):36–41. doi: 10.1007/s00415-005-0595-4 CrossRefPubMedGoogle Scholar
  11. Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Muller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67(7):1262–1264CrossRefPubMedGoogle Scholar
  12. Bender A, Samtleben W, Elstner M, Klopstock T (2008) Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res 28(3):172–178. doi: 10.1016/j.nutres.2008.01.001 CrossRefPubMedGoogle Scholar
  13. Benton D, Donohoe R (2011) The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr 105(7):1100–1105. doi: 10.1017/S0007114510004733 CrossRefPubMedGoogle Scholar
  14. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134CrossRefPubMedGoogle Scholar
  15. Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201CrossRefPubMedGoogle Scholar
  16. Brew BJ (2007) Lost in translation: again, another failed neuroprotection trial. Neurology 69(13):1308–1309. doi: 10.1212/01.wnl.0000277530.05450.ff CrossRefPubMedGoogle Scholar
  17. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2(11):806–819. doi: 10.1038/35097565 CrossRefPubMedGoogle Scholar
  18. Couzin J (2007) Clinical research. Testing a novel strategy against Parkinson’s disease. Science 315(5820):1778CrossRefPubMedGoogle Scholar
  19. Dedeoglu A, Kubilus JK, Yang L, Ferrante KL, Hersch SM, Beal MF, Ferrante RJ (2003) Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J Neurochem 85(6):1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ergorul C, Levin LA (2013) Solving the lost in translation problem: improving the effectiveness of translational research. Curr Opin Pharmacol 13(1):108–114. doi: 10.1016/j.coph.2012.08.005 CrossRefPubMedGoogle Scholar
  21. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20(12):4389–4397PubMedGoogle Scholar
  22. Genius J, Geiger J, Bender A, Moller HJ, Klopstock T, Rujescu D (2012) Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One 7(2):e30554. doi: 10.1371/journal.pone.0030554 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Groeneveld GJ, Veldink JH, van der Tweel I, Kalmijn S, Beijer C, de Visser M, Wokke JH, Franssen H, van den Berg LH (2003) A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol 53(4):437–445. doi: 10.1002/ana.10554 CrossRefPubMedGoogle Scholar
  24. Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43(2):519–529. doi: 10.1007/s00726-011-1132-7 CrossRefPubMedGoogle Scholar
  25. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775CrossRefPubMedGoogle Scholar
  26. Hemmer W, Wallimann T (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15(3–5):249–260PubMedGoogle Scholar
  27. Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, Como P, Zimmerman C, Lin M, Zhang L, Ulug AM, Beal MF, Matson W, Bogdanov M, Ebbel E, Zaleta A, Kaneko Y, Jenkins B, Hevelone N, Zhang H, Yu H, Schoenfeld D, Ferrante R, Rosas HD (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology 66(2):250–252. doi: 10.1212/01.wnl.0000194318.74946.b6 CrossRefPubMedGoogle Scholar
  28. Hervias I, Beal MF, Manfredi G (2006) Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 33(5):598–608. doi: 10.1002/mus.20489 CrossRefPubMedGoogle Scholar
  29. Kieburtz K, Tilley BC, Elm JJ, Babcock D, Hauser R, Ross GW, Augustine AH, Augustine EU, Aminoff MJ, Bodis-Wollner IG, Boyd J, Cambi F, Chou K, Christine CW, Cines M, Dahodwala N, Derwent L, Dewey RB Jr, Hawthorne K, Houghton DJ, Kamp C, Leehey M, Lew MF, Liang GS, Luo ST, Mari Z, Morgan JC, Parashos S, Perez A, Petrovitch H, Rajan S, Reichwein S, Roth JT, Schneider JS, Shannon KM, Simon DK, Simuni T, Singer C, Sudarsky L, Tanner CM, Umeh CC, Williams K, Wills AM (2015) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313(6):584–593. doi: 10.1001/jama.2015.120 CrossRefPubMedGoogle Scholar
  30. Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington′s disease. Hum Mol Genet 19(20):3919–3935. doi: 10.1093/hmg/ddq306 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347–350CrossRefPubMedGoogle Scholar
  32. Klivenyi P, Gardian G, Calingasan NY, Yang L, Beal MF (2003) Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Mol Neurosci 21(3):191–198CrossRefPubMedGoogle Scholar
  33. Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF (2004) Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 88(3):576–582CrossRefPubMedGoogle Scholar
  34. Klopstock T, Elstner M, Bender A (2011) Creatine in mouse models of neurodegeneration and aging. Amino Acids 40(5):1297–1303. doi: 10.1007/s00726-011-0850-1 CrossRefPubMedGoogle Scholar
  35. Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52. doi: 10.1006/bbrc.2001.6164 CrossRefPubMedGoogle Scholar
  36. Li Z, Wang P, Yu Z, Cong Y, Sun H, Zhang J, Zhang J, Sun C, Zhang Y, Ju X (2015) The effect of creatine and coenzyme q10 combination therapy on mild cognitive impairment in Parkinson’s disease. Eur Neurol 73(3–4):205–211. doi: 10.1159/000377676 CrossRefPubMedGoogle Scholar
  37. Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, Warner TT (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Ann Neurol 48(1):72–76CrossRefPubMedGoogle Scholar
  38. Lowe MT, Faull RL, Christie DL, Waldvogel HJ (2015) Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol 523(5):699–725. doi: 10.1002/cne.23667 CrossRefPubMedGoogle Scholar
  39. Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, Cohen BM, Renshaw PF (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100CrossRefPubMedGoogle Scholar
  40. Mak CS, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MT, Birch NP, Faull RL, Christie DL (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585. doi: 10.1016/j.neuroscience.2009.06.065 CrossRefPubMedGoogle Scholar
  41. Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18(1):156–163PubMedGoogle Scholar
  42. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149. doi: 10.1006/exnr.1999.7049 CrossRefPubMedGoogle Scholar
  43. National Academies of Sciences, Engineering, and Medicine (2015) Reproducibility issues in research with animals and animal models: workshop in Brief. The National Academies Press, Washington, DC, 1–8. ISBN 978-0-309-38017-1Google Scholar
  44. NINDS NET-PD Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66(5):664–671CrossRefGoogle Scholar
  45. O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414(2):253–257CrossRefPubMedGoogle Scholar
  46. Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease—2007. Mov Disord 22(Suppl 17):S335–S342CrossRefPubMedGoogle Scholar
  47. Pastula DM, Moore DH, Bedlack RS (2012) Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 12:CD005225. doi: 10.1002/14651858.CD005225.pub3 PubMedGoogle Scholar
  48. Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42CrossRefPubMedGoogle Scholar
  49. Perasso L, Lunardi G, Risso F, Pohvozcheva A, Leko M, Gandolfo C, Florio T, Cupello A, Burov S, Balestrino M (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33(5):765–775CrossRefPubMedGoogle Scholar
  50. Perasso L, Adriano E, Ruggeri P, Burov SV, Gandolfo C, Balestrino M (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163CrossRefPubMedGoogle Scholar
  51. Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M (2013) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev 33(2):336–363. doi: 10.1002/med.20255 CrossRefPubMedGoogle Scholar
  52. Peters OM, Ghasemi M, Brown RH Jr (2015) Emerging mechanisms of molecular pathology in ALS. J Clin Invest 125(5):1767–1779. doi: 10.1172/JCI71601 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Poortmans JR, Francaux M (2000) Adverse effects of creatine supplementation: fact or fiction? Sports Med 30(3):155–170CrossRefPubMedGoogle Scholar
  54. Rosas HD, Doros G, Gevorkian S, Malarick K, Reuter M, Coutu JP, Triggs TD, Wilkens PJ, Matson W, Salat DH, Hersch SM (2014) Precrest: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82(10):850–857. doi: 10.1212/wnl.0000000000000187 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rosenfeld J, King RM, Jackson CE, Bedlack RS, Barohn RJ, Dick A, Phillips LH, Chapin J, Gelinas DF, Lou JS (2008) Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler 9(5):266–272. doi: 10.1080/17482960802028890 CrossRefPubMedGoogle Scholar
  56. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7(1):97–109CrossRefPubMedGoogle Scholar
  57. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J, Al-Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9(1):4–15. doi: 10.1080/17482960701856300 CrossRefPubMedGoogle Scholar
  58. Shefner JM, Cudkowicz ME, Schoenfeld D, Conrad T, Taft J, Chilton M, Urbinelli L, Qureshi M, Zhang H, Pestronk A, Caress J, Donofrio P, Sorenson E, Bradley W, Lomen-Hoerth C, Pioro E, Rezania K, Ross M, Pascuzzi R, Heiman-Patterson T, Tandan R, Mitsumoto H, Rothstein J, Smith-Palmer T, MacDonald D, Burke D, NEALS Consortium (2004) A clinical trial of creatine in ALS. Neurology 63(9):1656–1661CrossRefPubMedGoogle Scholar
  59. Smith RN, Agharkar AS, Gonzales EB (2014) A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 3:222. doi: 10.12688/f1000research.5218.1 PubMedPubMedCentralGoogle Scholar
  60. Snow RJ, Turnbull J, da Silva S, Jiang F, Tarnopolsky MA (2003) Creatine supplementation and riluzole treatment provide similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience 119(3):661–667CrossRefPubMedGoogle Scholar
  61. Stevens PR, Gawryluk JW, Hui L, Chen X, Geiger JD (2014) Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury. Curr HIV Res 12(6):378–387CrossRefPubMedGoogle Scholar
  62. Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45(1):25–32CrossRefPubMedGoogle Scholar
  63. Tarnopolsky MA (2010) Caffeine and creatine use in sport. Ann Nutr Metab 57(Suppl 2):1–8. doi: 10.1159/000322696 CrossRefPubMedGoogle Scholar
  64. Thorsteinsdottir B, Grande JP, Garovic VD (2006) Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate. J Ren Nutr 16(4):341–345. doi: 10.1053/j.jrn.2006.04.025 CrossRefPubMedGoogle Scholar
  65. Turner CE, Byblow WD, Gant N (2015) Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci 35(4):1773–1780. doi: 10.1523/jneurosci.3113-14.2015 CrossRefPubMedGoogle Scholar
  66. Verbessem P, Lemiere J, Eijnde BO, Swinnen S, Vanhees L, Van Leemputte M, Hespel P, Dom R (2003) Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology 61(7):925–930CrossRefPubMedGoogle Scholar
  67. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296. doi: 10.1007/s00726-011-0877-3 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14(6):1105–1116CrossRefPubMedGoogle Scholar
  69. Xiao Y, Luo M, Luo H, Wan J (2014) Creatine for Parkinson’s disease. Cochrane Database Syst Rev 6:CD009646. doi: 10.1111/j.1471-4159.2009.06074.x PubMedGoogle Scholar
  70. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109(5):1427–1439. doi: 10.1111/j.1471-4159.2009.06074.x CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yazigi Solis M, de Salles Painelli V, Giannini Artioli G, Roschel H, Concepción Otaduy M, Gualano B (2014) Brain creatine depletion in vegetarians? A cross-sectional ¹H-magnetic resonance spectroscopy (¹H-MRS) study. Br J Nutr 111(7):1272–1274. doi: 10.1017/S0007114513003802 CrossRefPubMedGoogle Scholar
  72. Zhang W, Narayanan M, Friedlander RM (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol 53(2):267–270. doi: 10.1002/ana.10476 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Neurology with Friedrich-Baur-InstituteUniversity of MunichMunichGermany
  2. 2.Therapiezentrum BurgauBurgauGermany
  3. 3.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  4. 4.DZNE-German Center for Neurodegenerative DiseasesMunichGermany

Personalised recommendations