Amino Acids

, Volume 48, Issue 2, pp 419–426 | Cite as

2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis

  • Yahya E. Jad
  • Gerardo A. Acosta
  • Sherine N. Khattab
  • Beatriz G. de la Torre
  • Thavendran Govender
  • Hendrik G. Kruger
  • Ayman El-FahamEmail author
  • Fernando AlbericioEmail author
Original Article


2-MeTHF and CPME were evaluated as greener alternatives for the most employed solvents in peptide synthesis. The ability of these solvents to dissolve amino acid derivatives and a range of coupling reagents were evaluated as well as the swelling of polystyrene and polyethylene glycol resins. In addition, racemization and coupling efficiencies were also determined. We concluded that the use of 2-MeTHF with combination of DIC/OxymaPure gave the lowest racemization level during stepwise synthesis of Z-Phg-Pro-NH2 and the highest purity during SPPS of Aib-enkephalin pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH2).


Green solvents Solid-phase peptide synthesis Peptide synthesis 2-methyltetrahydrofuran Cyclopentyl methyl ether 





American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable


1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholinomethylene)]methanaminium hexafluorophosphate


Cyclopentyl methyl ether










N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]-pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide


N-[(1H-benzotriazol-1-yl)(dimethylamino)-methylene]-N-methylmethanaminium hexafluorophosphate N-oxide












Ethyl 2-cyano-2-(hydroxyimino)acetate







This work was funded in part by the following: the National Research Foundation (NRF) and the University of KwaZulu-Natal (South Africa); the CICYT (CTQ2012-30930), the Generalitat de Catalunya (2014 SGR 137), and the Institute for Research in Biomedicine Barcelona (IRB Barcelona) (Spain). In addition, the authors thank the Deanship of Scientific Research at King Saud University for partially funding this work through research group No. RGP-234 (Saudi Arabia). Finally, we thank Dr Karine Salim (Pcas) for the generous gift of ChemMatrix resin and Yoav Luxembourg (Luxembourg Bio Technologies Ltd) for his continuous support of this study.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

726_2015_2095_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2608 kb)


  1. Acosta GA, del Fresno M, Paradis-Bas M, Rigau-DeLlobet M, Cote S, Royo M, Albericio F (2009) Solid-phase peptide synthesis using acetonitrile as a solvent in combination with PEG-based resins. J Pept Sci 15:629–633. doi: 10.1002/psc.1158 CrossRefPubMedGoogle Scholar
  2. Adams JP et al (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. doi: 10.1039/C3GC40225H CrossRefGoogle Scholar
  3. Albericio F (2004) Developments in peptide and amide synthesis. Curr Opin Chem Biol 8:211–221. doi: 10.1016/j.cbpa.2004.03.002 CrossRefPubMedGoogle Scholar
  4. Albericio F, Kruger HG (2012) Therapeutic peptides. Future Med Chem 4:1527–1531. doi: 10.4155/fmc.12.94 CrossRefPubMedGoogle Scholar
  5. Alfonsi K et al (2008) Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem 10:31–36. doi: 10.1039/B711717E CrossRefGoogle Scholar
  6. Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP, Xu J (2011) Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org Process Res Dev 15:939–941. doi: 10.1021/op100303c CrossRefGoogle Scholar
  7. Behrendt R, Bruenner A, White P (2010) Critical evaluation of in situ coupling reagents for SPPS. J Pept Sci 16:71CrossRefGoogle Scholar
  8. Bruckdorfer T, Marder O, Albericio F (2004) From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 5:29–43CrossRefPubMedGoogle Scholar
  9. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398. doi: 10.1021/ja00063a082 CrossRefGoogle Scholar
  10. Carpino LA, El-Faham A, Minor CA, Albericio F (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Commun. doi: 10.1039/C39940000201 Google Scholar
  11. Cherkupally P et al (2013) K-Oxyma: a strong acylation-promoting, 2-CTC resin-friendly coupling additive. Eur J Org Chem. doi: 10.1002/ejoc.201300777 Google Scholar
  12. Constable DJC, Jimenez-Gonzalez C, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev 11:133–137. doi: 10.1021/op060170h CrossRefGoogle Scholar
  13. Dourtoglou V, Ziegler J-C, Gross B (1978) L’hexafluorophosphate de O-benzotriazolyl-N, N-tetramethyluronium: un reactif de couplage peptidique nouveau et efficace. Tetrahedron Lett 19:1269–1272. doi: 10.1016/0040-4039(78)80103-8 CrossRefGoogle Scholar
  14. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602. doi: 10.1021/cr100048w CrossRefPubMedGoogle Scholar
  15. El-Faham A, Subirós-Funosas R, Prohens R, Albericio F (2009) COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem Eur J 15:9404–9416. doi: 10.1002/chem.200900615 CrossRefPubMedGoogle Scholar
  16. Elsawy MA, Hewage C, Walker B (2012) Racemisation of N-Fmoc phenylglycine under mild microwave-SPPS and conventional stepwise SPPS conditions: attempts to develop strategies for overcoming this. J Pept Sci 18:302–311. doi: 10.1002/psc.2398 CrossRefPubMedGoogle Scholar
  17. Fields GB, Fields CG (1991) Solvation effects in solid-phase peptide synthesis. J Am Chem Soc 113:4202–4207. doi: 10.1021/ja00011a023 CrossRefGoogle Scholar
  18. Garcia-Martin F et al (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220. doi: 10.1021/cc0600019 CrossRefPubMedGoogle Scholar
  19. Henderson RK et al (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854–862. doi: 10.1039/C0GC00918K CrossRefGoogle Scholar
  20. Jad YE, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F (2014a) Oxyma-B, an excellent racemization suppressor for peptide synthesis. Org Biomol Chem 12:8379–8385. doi: 10.1039/C4OB01612B CrossRefPubMedGoogle Scholar
  21. Jad YE, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F (2014b) TOMBU and COMBU as novel uronium-type peptide coupling reagents derived from oxyma-B. Molecules 19:18953–18965CrossRefPubMedGoogle Scholar
  22. Jad YE et al (2015) Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives. Org Biomol Chem 13:2393–2398. doi: 10.1039/C4OB02046D CrossRefPubMedGoogle Scholar
  23. König W, Geiger R (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber 103:788–798. doi: 10.1002/cber.19701030319 CrossRefPubMedGoogle Scholar
  24. MacMillan DS, Murray J, Sneddon HF, Jamieson C, Watson AJB (2013) Evaluation of alternative solvents in common amide coupling reactions: replacement of dichloromethane and N,N-dimethylformamide. Green Chem 15:596–600. doi: 10.1039/C2GC36900A CrossRefGoogle Scholar
  25. Marx V (2005) Watching peptide drugs grow up. Chem Eng News 83:17–24. doi: 10.1021/cen-v083n011.p017 Google Scholar
  26. Prat D et al (2013) Sanofi’s solvent selection guide: a step toward more sustainable. Processes Org Process Res Dev 17:1517–1525. doi: 10.1021/op4002565 CrossRefGoogle Scholar
  27. Prat D, Hayler J, Wells A (2014) A survey of solvent selection guides. Green Chem 16:4546–4551. doi: 10.1039/C4GC01149J CrossRefGoogle Scholar
  28. Santini R, Griffith MC, Qi M (1998) A measure of solvent effects on swelling of resins for solid phase organic synthesis. Tetrahedron Lett 39:8951–8954. doi: 10.1016/S0040-4039(98)02069-3 CrossRefGoogle Scholar
  29. Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642. doi: 10.1016/j.copbio.2006.10.002 CrossRefPubMedGoogle Scholar
  30. Subiros-Funosas R, Khattab SN, Nieto-Rodriguez L, El-Faham A, Albericio F (2013) Advances in acylation methodologies enabled by oxyma-based reagents. Aldrichim Acta 46:21–40Google Scholar
  31. Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403. doi: 10.1002/chem.200900614 CrossRefPubMedGoogle Scholar
  32. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56. doi: 10.1016/j.drudis.2009.10.009 CrossRefPubMedGoogle Scholar
  33. Watanabe K, Yamagiwa N, Torisawa Y (2007) Cyclopentyl methyl ether as a new and alternative process solvent. Org Process Res Dev 11:251–258. doi: 10.1021/op0680136 CrossRefGoogle Scholar
  34. Wehrstedt KD, Wandrey PA, Heitkamp D (2005) Explosive properties of 1-hydroxybenzotriazoles. J Hazard Mater A126:1–7. doi: 10.1016/j.jhazmat.2005.05.044 CrossRefGoogle Scholar
  35. Zompra AA, Galanis AS, Werbitzky O, Albericio F (2009) Manufacturing peptides as active pharmaceutical ingredients. Future Med Chem 1:361–377. doi: 10.4155/fmc.09.23 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yahya E. Jad
    • 1
  • Gerardo A. Acosta
    • 2
    • 3
  • Sherine N. Khattab
    • 4
  • Beatriz G. de la Torre
    • 1
  • Thavendran Govender
    • 1
  • Hendrik G. Kruger
    • 1
  • Ayman El-Faham
    • 4
    • 5
    Email author
  • Fernando Albericio
    • 1
    • 2
    • 3
    • 5
    • 6
    • 7
    Email author
  1. 1.Catalysis and Peptide Research Unit, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Institute for Research in Biomedicine-BarcelonaBarcelonaSpain
  3. 3.CIBER-BBNNetworking Centre on Bioengineering, Biomaterials and NanomedicineBarcelonaSpain
  4. 4.Department of Chemistry, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  5. 5.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  6. 6.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  7. 7.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations