Amino Acids

, Volume 48, Issue 1, pp 307–318 | Cite as

The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism

  • Katia Conceição
  • Pedro R. Magalhães
  • Sara R. R. Campos
  • Marco M. Domingues
  • Vasanthakumar G. Ramu
  • Matthias Michalek
  • Philippe Bertani
  • António M. Baptista
  • Montserrat Heras
  • Eduard R. Bardaji
  • Burkhard Bechinger
  • Mônica Lopes Ferreira
  • Miguel A. R. B. Castanho
Original Article

Abstract

Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential “stretched” conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood–brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same.

Keywords

Kyotorphin Kyotorphin amide Ibuprofen Analgesia Microcirculation 

Supplementary material

726_2015_2088_MOESM1_ESM.doc (9.8 mb)
Supplementary material 1 (DOC 10049 kb)

References

  1. Amornphimoltham P, Masedunskas A, Weigert R (2011) Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv Drug Deliv Rev 63:119–128PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, Long EM, Robbins SM, Kubes P (2009) Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest 119:1921–1930PubMedPubMedCentralGoogle Scholar
  3. Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K, Ito S (1997) Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 100:2816–2823PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ayoub M, Scheidegger D (2006) Peptide drugs, overcoming the challenges, a growing business. Chem Today 24:46–48Google Scholar
  5. Baamonde A, Lastra A, Juárez L, García-Suárez O, Meana A, Hidalgo A, Menéndez L (2006) Endogenous beta-endorphin induces thermal analgesia at the initial stages of a murine osteosarcoma. Peptides 27:2778–2785PubMedCrossRefGoogle Scholar
  6. Baez S (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–396PubMedCrossRefGoogle Scholar
  7. Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, Rovini M, Valenti S, Giorgi G, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Papa G, Ghelardini C, Di Cesare Mannelli L, Giordani A, Anzellotti P, Bruno A, Patrignani P, Anzini M (2011) Novel analgesic/anti-inflammatory agents: diarylpyrrole acetic esters endowed with nitric oxide releasing properties. J Med Chem 24:7759–7771CrossRefGoogle Scholar
  8. Brandenburg K, David A, Howe J, Koch MH, Andrä J, Garidel P (2005) Temperature dependence of the binding of endotoxins to the polycationic peptides polymyxin B and its nonapeptide. Biophys J 88:1845–1858PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chiu SW, Clark M, Balaji V, Subramaniam S, Scott HL, Jakobsson E (1995) Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 69:1230–1245PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891PubMedCrossRefGoogle Scholar
  11. Conceição K, Santos JM, Bruni FM, Klitzke CF, Marques EE, Borges MH, Melo RL, Fernandez JH, Lopes-Ferreira M (2009) Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom. Peptides 3012:2191–2199CrossRefGoogle Scholar
  12. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293PubMedGoogle Scholar
  13. Domingues MM, Castanho MA, Santos NC (2009) rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. PLoS One 22:e8385CrossRefGoogle Scholar
  14. Domingues MM, Inácio RG, Raimundo JM, Martins M, Castanho MA, Santos NC (2012) Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. Biopolymers 98:338–344PubMedCrossRefGoogle Scholar
  15. Ganz T, Lehrer RI (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 11:19Google Scholar
  16. Gavins FN, Chatterjee BE (2004) Intravital microscopy for the study of mouse microcirculation in anti-inflammatory drug research: focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods 49:1–14PubMedCrossRefGoogle Scholar
  17. Gold R, Buttgereit F, Toyota KV (2001) Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol 117:1–8PubMedCrossRefGoogle Scholar
  18. Hervé F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10:455–472PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447PubMedCrossRefGoogle Scholar
  20. Hilburger ME, Adler WM, Truant A, Meissler J, Satishchandran V, Rogers TJ, Eisenstein TK (1997) Morphine induces sepsis in mice. J Infect Dis 176:183–188PubMedCrossRefGoogle Scholar
  21. Hortelano S, López-Fontal R, Través PG, Villa N, Grashoff C, Boscá L, Luque A (2010) ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leukocyte trans-endothelial migration. Cardiovasc Res 86:283–292PubMedCrossRefGoogle Scholar
  22. Hua S, Cabot PJ (2010) Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci 31:427–433PubMedCrossRefGoogle Scholar
  23. Hughes EL, Gavins FN (2010) Troubleshooting methods: using intravital microscopy in drug research. J Pharmacol Toxicol Methods 61:102–112PubMedCrossRefGoogle Scholar
  24. Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hwang TL, Shaka AJ (1998) Multiple-pulse mixing sequences that selectively enhance chemical exchange or cross-relaxation peaks in high-resolution NMR spectra. J Magn Reson 135:280–287PubMedCrossRefGoogle Scholar
  26. Jadert C, Petersson J, Massena S, Ahl D, Grapensparr L, Holm L (2011) Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury. Free Radic Biol Med 52:683–692PubMedCrossRefGoogle Scholar
  27. Johnson BA, Blevins RA (1994) A computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614PubMedCrossRefGoogle Scholar
  28. Kolaeva SG, Semenova TP, Santalova IM, Moshkov DA, Anoshkina IA, Golozubova V (2000) Effects of L-thyrosyl–L-arginine (kyotorphin) on the behavior of rats and goldfish. Peptides 21:1331–1336PubMedCrossRefGoogle Scholar
  29. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 29:37CrossRefGoogle Scholar
  30. Lesniak A, Lipkowski AW (2011) Opioid peptides in peripheral pain control. Acta Neurobiol Exp 71:121–138Google Scholar
  31. Machelska H, Schopohl JK, Mousa SA, Labuz D, Schäfer M, Stein C (2003) Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neuroimmunol 141:30–39PubMedCrossRefGoogle Scholar
  32. Machuqueiro M, Campos SRR, Soares CM, Baptista AM (2010) Membrane-induced conformational changes of kyotorphin revealed by molecular dynamics simulations. J Phys Chem B 114:11659–11667PubMedCrossRefGoogle Scholar
  33. Magalhães PR, Machuqueiro M, Baptista AM (2015) Constant-pH molecular dynamics study of kyotorphin in an explicit bilayer. Biophys J 108:2282–2290PubMedCrossRefGoogle Scholar
  34. Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM, Shai Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283:22907–22917PubMedCrossRefGoogle Scholar
  35. Marx V (2005) Watching peptide drugs grow up. Chem Eng News 83:17Google Scholar
  36. Mitchell JA, Warner TD (1999) Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol 128:1121–1132PubMedPubMedCentralCrossRefGoogle Scholar
  37. Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514PubMedCrossRefGoogle Scholar
  38. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676PubMedCrossRefGoogle Scholar
  39. Pålsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113:153–162PubMedPubMedCentralCrossRefGoogle Scholar
  40. Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125PubMedCrossRefGoogle Scholar
  41. Quyyumi AA (2003) Prognostic value of endothelial function. Am J Cardiol 91:19–24CrossRefGoogle Scholar
  42. Raman EP, Takeda T, Klimov DK (2009) Molecular dynamics simulations of ibuprofen binding to Aβ peptides. Biophys J 97:2070–2079PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ramu VG, Bardaji E, Heras M (2014) DEPBT as coupling reagent to avoid racemization in solution phase synthesis of a kyotorphin derivative. Synthesis 46:1481–1486CrossRefGoogle Scholar
  44. Ribeiro MM, Pinto A, Pinto M, Heras M, Martins I, Correian A, Bardaji E, Tavares I, Castanho M (2011a) Inhibition of nociceptive responses after systemic administration of amidated kyotorphin. Br J Pharm 163:964–973CrossRefGoogle Scholar
  45. Ribeiro MM, Pinto AR, Domingues MM, Serrano I, Heras M, Bardaji ER, Tavares I, Castanho MA (2011b) Chemical conjugation of the neuropeptide kyotorphin and ibuprofen enhances brain targeting and analgesia. Mol Pharm 8:1929–1940PubMedCrossRefGoogle Scholar
  46. Ribeiro MM, Franquelim HG, Torcato IM, Ramu VG, Heras M, Bardaji ER, Castanho MA (2012) Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy. Biochem Biophys Res Commun 420:676–679PubMedCrossRefGoogle Scholar
  47. Ribeiro MM, Santos SS, Sousa DS, Oliveira M, Santos SM, Heras M, Bardaji E, Tavares I, Castanho MA (2013) Side-effects of analgesic kyotorphin derivatives: advantages over clinical opioid drugs. Amino Acids 45:171–178PubMedCrossRefGoogle Scholar
  48. Santos NC, Silva AC, Castanho MA, Martins-Silva J, Saldanha C (2003) Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem 3:96–100CrossRefGoogle Scholar
  49. Seehase S, Lauenstein HD, Schlumbohm C, Switalla S, Neuhaus V, Förster C, Fieguth HG, Pfennig O, Fuchs E, Kaup FJ, Bleyer M, Hohlfeld JM, Braun A, Sewald K, Knauf S (2012) LPS-induced lung inflammation in marmoset monkeys—an acute model for anti-inflammatory drug testing. PLoS One 7:e43709PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shiomi H, Ueda H, Takagi H (1981) Isolation and identification of an analgesic opioid dipeptide kyotorphin (Tyr-Arg) from bovine brain. Neuropharmacology 20:633–638PubMedCrossRefGoogle Scholar
  51. Srimal S, Surolia N, Balasubramanian S, Surolia A (1996) Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem J 315:679–686PubMedPubMedCentralCrossRefGoogle Scholar
  52. Takagi H, Shiomi H, Ueda H, Amano H (1979) Morphine-like analgesia by a new dipeptide, l-tyrosyl-l-arginine (Kyotorphin) and its analogue. Eur J Pharmacol 55:109–111PubMedCrossRefGoogle Scholar
  53. Ulevitch RJ, Tobias PS (1999) Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 11:19–22PubMedCrossRefGoogle Scholar
  54. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411PubMedPubMedCentralGoogle Scholar
  55. Wang J, Barke RA, Charboneau R, Roy S (2005) Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol 174:426–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Katia Conceição
    • 1
    • 2
  • Pedro R. Magalhães
    • 3
  • Sara R. R. Campos
    • 3
  • Marco M. Domingues
    • 1
  • Vasanthakumar G. Ramu
    • 4
  • Matthias Michalek
    • 5
  • Philippe Bertani
    • 5
  • António M. Baptista
    • 3
  • Montserrat Heras
    • 4
  • Eduard R. Bardaji
    • 4
  • Burkhard Bechinger
    • 5
  • Mônica Lopes Ferreira
    • 6
  • Miguel A. R. B. Castanho
    • 1
  1. 1.Faculdade de Medicina de LisboaInstituto de Medicina MolecularLisbonPortugal
  2. 2.Departamento de Ciência e TecnologiaUniversidade Federal de São Paulo, UNIFESPSão José dos CamposBrazil
  3. 3.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  4. 4.Laboratori d’Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de QuímicaUniversitat de GironaGironaSpain
  5. 5.UMR7177, Institut de chimie de Strasbourg, CNRSUniversity of StrasbourgStrasbourgFrance
  6. 6.Unidade de Imunorregulação, Laboratório Especial de Toxinologia AplicadaInstituto ButantanSão PauloBrazil

Personalised recommendations