Advertisement

Amino Acids

, Volume 48, Issue 1, pp 269–280 | Cite as

Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus

  • Daniel Knappe
  • Serge Ruden
  • Stefanie Langanke
  • Tarun Tikkoo
  • Jennifer Ritzer
  • Ralf Mikut
  • Lisandra L. Martin
  • Ralf Hoffmann
  • Kai Hilpert
Original Article

Abstract

The identification of lead molecules against multidrug-resistant bacteria ensuing the development of novel antimicrobial drugs is an urgent task. Proline-rich antimicrobial peptides are highly active in vitro and in vivo, but only against a few Gram-negative human pathogens, with rather weak activities against Pseudomonas aeruginosa and Staphylococcus aureus. This reduced level of efficacy could be related to inadequate uptake mechanisms or structural differences of the intracellular target proteins, i.e., the 70S ribosome or chaperone DnaK. Here we synthesized peptide arrays on cellulose membranes using cleavable linkers to release the free individual peptides for further antimicrobial tests. Thus, a library of singly substituted oncocin analogs was produced by replacing each residue by all other 19 canonical amino acids yielding a set of 361 individual peptides to be evaluated against a luminescent P. aeruginosa strain. Thirteen substitutions appeared promising and their improved antibacterial activities were confirmed for different bacteria after larger scale synthesis of these analogs. By combining two favorable substitutions into one peptide, we finally obtained an oncocin analog that was ten times more active against P. aeruginosa and even 100-fold more active against S. aureus than the original oncocin, providing minimal inhibitory concentrations of 4–8 and 0.5 µg/mL, respectively.

Keywords

Oncocin Proline-rich antimicrobial peptide Pseudomonas aeruginosa Quartz crystal microbalance SPOT synthesis 

Notes

Acknowledgments

We thank Laszlo Otvos for helpful discussions and proofreading. Financial support by the European Fund for Regional Structure Development (EFRE, European Union and Free State Saxony, no. 13405/2286), the Federal Ministry of Education and Research (BMBF; no. 01GU1104A), and German Academic Exchange Service (DAAD, no. 56265084) is gratefully acknowledged.

Compliance with ethical standards

Funding

This study was funded by the European Fund for Regional Structure Development (EFRE, European Union and Free State Saxony, Grant number 13405/2286), the Federal Ministry of Education and Research (BMBF, Grant number 01GU1104A), and German Academic Exchange Service (DAAD, Grant number. 56265084).

Conflict of interest

Ralf Hoffmann is a cofounder of AMP Therapeutics GmbH (Leipzig, Germany) and member of its scientific advisory board. Daniel Knappe was a part-time coworker of AMPT. The authors filed a patent application including the manuscript data under file number WO 2013/064633 (“Oncopeltus peptide derivatives as antimicrobial peptides”, May 10, 2013).

Ethical approval

None.

Supplementary material

726_2015_2082_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOC 1847 kb)

References

  1. Benincasa M, Pelillo C, Zorzet S, Garrovo C, Biffi S, Gennaro R, Scocchi M (2010) The proline-rich peptide Bac7(1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiol 10(178):178PubMedPubMedCentralCrossRefGoogle Scholar
  2. Berthold N, Czihal P, Fritsche S, Sauer U, Schiffer G, Knappe D, Alber G, Hoffmann R (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob Agents Chemother 57(1):402–409PubMedPubMedCentralCrossRefGoogle Scholar
  3. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins—antibacterial peptides from honeybees. EMBO J 8(8):2387–2391PubMedPubMedCentralGoogle Scholar
  4. CDC (2013) Antibiotic resistance threats in the United States 2013. Centers for disease control and preventionGoogle Scholar
  5. Czihal P, Knappe D, Fritsche S, Zahn M, Berthold N, Piantavigna S, Muller U, Van Dorpe S, Herth N, Binas A, Kohler G, De Spiegeleer B, Martin LL, Nolte O, Strater N, Alber G, Hoffmann R (2012) Api88 is a novel antibacterial designer peptide to treat systemic infections with multidrug-resistant gram-negative pathogens. ACS Chem Biol 7(7):1281–1291PubMedCrossRefGoogle Scholar
  6. Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of 2 bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57(10):3142–3146PubMedPubMedCentralGoogle Scholar
  7. Hilpert K, Hancock REW (2007) Use of luminescent bacteria for rapid screening and characterization of short cationic antimicrobial peptides synthesized on cellulose using peptide array technology. Nat Protoc 2(7):1652–1660PubMedCrossRefGoogle Scholar
  8. Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotech 23(8):1008–1012CrossRefGoogle Scholar
  9. Knappe D, Piantavigna S, Hansen A, Mechler A, Binas A, Nolte O, Martin LL, Hoffmann R (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J Med Chem 53(14):5240–5247PubMedCrossRefGoogle Scholar
  10. Knappe D, Kabankov N, Hoffmann R (2011a) Bactericidal oncocin derivatives with superior serum stabilities. Int J Antimicrob Agents 37(2):166–170PubMedCrossRefGoogle Scholar
  11. Knappe D, Zahn M, Sauer U, Schiffer G, Strater N, Hoffmann R (2011b) Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the Oncocin-DnaK complex. ChemBioChem 12(6):874–876PubMedCrossRefGoogle Scholar
  12. Knappe D, Fritsche S, Alber G, Kohler G, Hoffmann R, Muller U (2012) Oncocin derivative Onc72 is highly active against Escherichia coli in a systemic septicaemia infection mouse model. J Antimicrob Chemother 67(10):2445–2451PubMedCrossRefGoogle Scholar
  13. Knappe D, Adermann K, Hoffmann R (2015) Oncocin Onc72 is efficacious against antibiotic-susceptible Klebsiella pneumoniae ATCC 43816 in a murine thigh infection model. Biopolymers.doi: 10.1002/bip.22668
  14. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cyto-toxicity. J Immunol Methods 64(3):313–320PubMedCrossRefGoogle Scholar
  15. Krizsan A, Volke D, Weinert S, Strater N, Knappe D, Hoffmann R (2014) Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew Chem Int Ed 53(45):12236–12239CrossRefGoogle Scholar
  16. Krizsan A, Prahl C, Goldbach T, Knappe D, Hoffmann R (2015) Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit (Manuscript submitted)Google Scholar
  17. Kumar K, Chopra S (2013) New drugs for methicillin-resistant Staphylococcus aureus: an update. J Antimicrob Chemother 68(7):1465–1470PubMedCrossRefGoogle Scholar
  18. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M (2014) The host antimicrobial peptide Bac7(1-35) binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21(12):1639–1647PubMedCrossRefGoogle Scholar
  19. McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Separovic F, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J Biophys Lett 40(4):437–446CrossRefGoogle Scholar
  20. Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93(11):3907–3916PubMedPubMedCentralCrossRefGoogle Scholar
  21. Mikut R (2010) Computer-based analysis, visualization, and interpretation of antimicrobial peptide activities. In: Giuliani A, Rinaldi AC(eds) Antimicrobial peptides, 618 edn. Humana Press, pp 287–99Google Scholar
  22. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9(4):228–236PubMedCrossRefGoogle Scholar
  23. Ostorhazi E, Rozgonyi F, Sztodola A, Harmos F, Kovalszky I, Szabo D, Knappe D, Hoffmann R, Cassone M, Wade JD, Bonomo RA, Otvos L (2010) Preclinical advantages of intramuscularly administered peptide A3-APO over existing therapies in Acinetobacter baumannii wound infections. J Antimicrob Chemother 65(11):2416–2422PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ostorhazi E, Holub MC, Rozgonyi F, Harmos F, Cassone M, Wade JD, Otvos L Jr (2011) Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 37(5):480–484PubMedCrossRefGoogle Scholar
  25. Ostorhazi E, Voros E, Nemes-Nikodem E, Pinter D, Sillo P, Mayer B, Wade JD, Otvos L (2013) Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 42(6):537–543PubMedCrossRefGoogle Scholar
  26. Ostorhazi E, Nemes-Nikodem E, Knappe D, Hoffmann R (2014) In vivo activity of optimized Apidaecin and Oncocin peptides against a multiresistant, KPC-producing Klebsiella pneumoniae strain. Protein Pept Lett 21(4):368–373PubMedCrossRefGoogle Scholar
  27. Otvos L (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59(7):1138–1150PubMedCrossRefGoogle Scholar
  28. Otvos L, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39(46):14150–14159PubMedCrossRefGoogle Scholar
  29. Otvos L, Wade JD, Lin F, Condie BA, Hanrieder J, Hoffmann R (2005) Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J Med Chem 48(16):5349–5359PubMedCrossRefGoogle Scholar
  30. Piantavigna S, Czihal P, Mechler A, Richter M, Hoffmann R, Martin LL (2009) Cell penetrating Apidaecin peptide interactions with biomimetic phospholipid membranes. Int J Pept Res Ther 15(2):139–146CrossRefGoogle Scholar
  31. Roy RN, Lomakin IB, Gagnon MG, Steitz TA (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat Struct Mol Biol 22(6):466–469PubMedPubMedCentralCrossRefGoogle Scholar
  32. Seefeldt AC, Nguyen F, Antunes S, Perebaskine N, Graf M, Arenz S, Inampudi KK, Douat C, Guichard G, Wilson DN, Innis CA (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat Struct Mol Biol 22(6):470–475PubMedCrossRefGoogle Scholar
  33. Szabo D, Ostorhazi E, Binas A, Rozgonyi F, Kocsis B, Cassone M, Wade JD, Nolte O, Otvos L (2010) The designer proline-rich antibacterial peptide A3-APO is effective against systemic Escherichia coli infections in different mouse models. Int J Antimicrob Agents 35(4):357–361PubMedCrossRefGoogle Scholar
  34. Volke D, Krizsan A, Berthold N, Knappe D, Hoffmann R (2015) Identification of Api88 binding partners in Escherichia coli using a photoaffinity-crosslink strategy and label free quantification. J Proteome Res 14(8):3274–3283PubMedCrossRefGoogle Scholar
  35. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175PubMedCrossRefGoogle Scholar
  36. Zahn M, Berthold N, Kieslich B, Knappe D, Hoffmann R, Strater N (2013) Structural studies on the forward and reverse binding modes of peptides to the Chaperone DnaK. J Mol Biol 425(14):2463–2479PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Daniel Knappe
    • 1
    • 2
  • Serge Ruden
    • 3
  • Stefanie Langanke
    • 1
    • 2
  • Tarun Tikkoo
    • 4
  • Jennifer Ritzer
    • 1
    • 2
  • Ralf Mikut
    • 5
  • Lisandra L. Martin
    • 4
  • Ralf Hoffmann
    • 1
    • 2
  • Kai Hilpert
    • 3
    • 6
  1. 1.Institute of Bioanalytical Chemistry, Faculty of Chemistry and MineralogyUniversität LeipzigLeipzigGermany
  2. 2.Center for Biotechnology and BiomedicineUniversität LeipzigLeipzigGermany
  3. 3.Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces and Institute of Microstructure TechnologyKarlsruheGermany
  4. 4.School of ChemistryMonash UniversityClaytonAustralia
  5. 5.Karlsruhe Institute of Technology (KIT)Institute for Applied Computer ScienceKarlsruheGermany
  6. 6.Institute of Infection and ImmunitySt. George’s, University of LondonLondonUK

Personalised recommendations