Advertisement

Amino Acids

, Volume 47, Issue 11, pp 2367–2376 | Cite as

Carnosine metabolism in diabetes is altered by reactive metabolites

  • Verena Peters
  • Barbara Lanthaler
  • Albert Amberger
  • Thomas Fleming
  • Elisabete Forsberg
  • Markus Hecker
  • Andreas H. Wagner
  • Wyatt W. Yue
  • Georg F. Hoffmann
  • Peter Nawroth
  • Johannes ZschockeEmail author
  • Claus P. Schmitt
Original Article

Abstract

Carnosinase 1 (CN1) contributes to diabetic nephropathy by cleaving histidine-dipeptides which scavenge reactive oxygen and carbonyl species and increase nitric oxide (NO) production. In diabetic mice renal CN1 activity is increased, the regulatory mechanisms are unknown. We therefore analysed the in vitro and in vivo regulation of CN1 activity using recombinant and human CN1, and the db/db mouse model of diabetes. Glucose, leptin and insulin did not modify recombinant and human CN1 activity in vitro, glucose did not alter renal CN1 activity of WT or db/db mice ex vivo. Reactive metabolite methylglyoxal and Fenton reagent carbonylated recombinant CN1 and doubled CN1 efficiency. NO S-nitrosylated CN1 and decreased CN1 efficiency for carnosine by 70 % (p < 0.01), but not for anserine. Both CN1 cysteine residues were nitrosylated, the cysteine at position 102 but not at position 229 regulated CN1 activities. In db/db mice, renal CN1 mRNA and protein levels were similar as in non-diabetic controls, CN1 efficiency 1.9 and 1.6 fold higher for carnosine and anserine. Renal carbonyl stress was strongly increased and NO production halved, CN1 highly carbonylated and less S-nitrosylated compared to WT mice. GSH and NO2/3 concentrations were reduced and inversely related with carnosine degradation rate (r = −0.82/−0.85). Thus, reactive metabolites of diabetes upregulate CN1 activity by post-translational modifications, and thus decrease the availability of reactive metabolite-scavenging histidine dipeptides in the kidney in a positive feedback loop. Interference with this vicious circle may represent a new therapeutic target for mitigation of DN.

Keywords

Diabetic nephropathy Carnosinase Carnosine Anserine N-carbonylation S-nitrosylation 

Abbreviations

CN1

Carnosinase 1

ROS

Reactive oxygen species

RCS

Reactive carbonyl species

NO

Nitric oxide

HDP

Histidine-dipeptides

H2O2

Hydrogen peroxide

MG

Methylglyoxal

DN

Diabetic nephropathy

Notes

Acknowledgments

We thank Kristina Klingbeil and Nadine Scholz for excellent technical assistance. Part of this study was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 1118 and Ma2510/3-1 and Zs17/5-1), by the Dietmar Hopp Foundation, St. Leon-Roth, and the Doktor Pfleger Foundation, Bamberg, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. Aldini G, Facino RM, Beretta G, Carini M (2005) Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. BioFactors (Oxford, England) 24:77–87CrossRefGoogle Scholar
  2. Alhamdani M, Al-Azzawie HF, Abbas FK (2007) Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit Dial Int 27:86–89PubMedGoogle Scholar
  3. Ansurudeen I et al (2012) Carnosine enhances diabetic wound healing in the db/db mouse model of type 2 diabetes. Amino Acids 43:127–134. doi: 10.1007/s00726-012-1269-z CrossRefPubMedGoogle Scholar
  4. Babizhayev MA, Lankin VZ, Savel’Yeva EL, Deyev AI, Yegorov YE (2013) Diabetes mellitus: novel insights, analysis and interpretation of pathophysiology and complications management with imidazole-containing peptidomimetic antioxidants. Recent Pat Drug Deliv Formul 7:216–256CrossRefPubMedGoogle Scholar
  5. Barski OA et al (2013) Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 33:1162–1170. doi: 10.1161/atvbaha.112.300572 CrossRefPubMedGoogle Scholar
  6. Baylis C (2012) Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens 21:1–6. doi: 10.1097/MNH.0b013e32834d54ca PubMedCentralCrossRefPubMedGoogle Scholar
  7. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845. doi: 10.1152/physrev.00039.2012 CrossRefPubMedGoogle Scholar
  8. Budzen S, Rymaszewska J (2013) The biological role of carnosine and its possible applications in medicine. Adv Clin Exp Med Off Organ Wroc Med Univ 22:739–744Google Scholar
  9. Chang CY et al (2010) Crystal structure and mutational analysis of aminoacylhistidine dipeptidase from Vibrio alginolyticus reveal a new architecture of M20 metallopeptidases. J Biol Chem 285:39500–39510. doi: 10.1074/jbc.M110.139683 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cheang WS et al (2011) Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice. Cardiovasc Res 92:267–275. doi: 10.1093/cvr/cvr233 CrossRefPubMedGoogle Scholar
  11. Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA (2012) Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 23:399–406. doi: 10.1016/j.tem.2012.05.008 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406 (pii:010.002.11) PubMedCentralCrossRefPubMedGoogle Scholar
  13. Decker E, Livisay SA, Zhou S (2000) A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc) 65:766–770Google Scholar
  14. Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ (2006) Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55:1961–1969. doi: 10.2337/db05-1634 CrossRefPubMedGoogle Scholar
  15. Drozak J, Veiga-da-Cunha M, Vertommen D, Stoobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 2685:9346–9356CrossRefGoogle Scholar
  16. Drozak J, Chrobok L, Poleszak O, Jagielski AK, Derlacz R (2013) Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like). PLoS One 8:e64805. doi: 10.1371/journal.pone.0064805 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Forrester M, Foster MW, Benhar M, Stamler JS (2009) Detection of protein S-nitrosylation with the biotin switch technique. Free Radic Biol Med 46:119–126PubMedCentralCrossRefPubMedGoogle Scholar
  18. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(829–837):837a–837d. doi: 10.1093/eurheartj/ehr304 Google Scholar
  19. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404. doi: 10.1016/j.molmed.2009.06.007 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Freedman BI, Bostrom M, Daeihagh P, Bowden DW (2007) Genetic factors in diabetic nephropathy. Clin J Am Soc Nephrol 2:1306–1316. doi: 10.2215/CJN.02560607 CrossRefPubMedGoogle Scholar
  21. Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem. doi: 10.1074/jbc.R113.460261 Google Scholar
  22. Hartmanova T, Tambor V, Lenco J, Staab-Weijnitz CA, Maser E, Wsol V (2013) S-Nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity. Chem Biol Interact. doi: 10.1016/j.cbi.2012.12.011 PubMedGoogle Scholar
  23. Hipkiss AR (2011) Energy metabolism, proteotoxic stress and age-related dysfunction—protection by carnosine. Mol Aspect Med 32:267–278CrossRefGoogle Scholar
  24. Holliday R, McFarland GA (1996) Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer 73:966–971PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hou W, Chen HJ, Lin YH (2003) Antioxidant peptides with Angiotensin converting enzyme inhibitory activities and applications for Angiotensin converting enzyme purification. J Agric Food Chem 51:1706–17093CrossRefPubMedGoogle Scholar
  26. Janssen B et al (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327 (pii: 54/8/2320) CrossRefPubMedGoogle Scholar
  27. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lapolla A, Reitano R, Seraglia R, Sartore G, Ragazzi E, Traldi P (2005) Evaluation of advanced glycation end products and carbonyl compounds in patients with different conditions of oxidative stress. Mol Nutr Food Res 49:685–690. doi: 10.1002/mnfr.200400093 CrossRefPubMedGoogle Scholar
  29. Letzien U, Oppermann H, Meixensberger J, Gaunitz F (2014) The antineoplastic effect of carnosine is accompanied by induction of PDK4 and can be mimicked by l-histidine. Amino Acids 46:1009–1019. doi: 10.1007/s00726-014-1664-8 CrossRefPubMedGoogle Scholar
  30. Maisonneuve E, Ducret A, Khoueiry P, Lignon S, Longhi S, Talla E, Dukan S (2009) Rules governing selective protein carbonylation. PLoS One 4:e7269. doi: 10.1371/journal.pone.0007269 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Masha A, Dinatale S, Allasia S, Martina V (2011) Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus. Curr Pharm Biotechnol 12:1354–1363 (pii:BSP/CPB/E-Pub/-00061-12-5) CrossRefPubMedGoogle Scholar
  32. Min J et al (2008) Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. J Neurosci Res 86:2984–2991. doi: 10.1002/jnr.21744 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Mong MC, Chao CY, Yin MC (2011) Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 653:82–88. doi: 10.1016/j.ejphar.2010.12.001 CrossRefPubMedGoogle Scholar
  34. Mooyaart AL et al (2010) Association between CNDP1 genotype and diabetic nephropathy is sex specific. Diabetes 59:1555–1559. doi: 10.2337/db09-1377 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Mozdan M, Szemraj J, Rysz J, Nowak D (2005) Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions. Basic Clin Pharmacol Toxicol 96:352–360CrossRefGoogle Scholar
  36. Nakagawa K, Ueno A, Nishikawa Y (2006) Interactions between carnosine and captopril on free radical scavenging activity and angiotensin-converting enzyme activity in vitro Yakugaku zasshi. J Pharm Soc Jpn 126:37–42Google Scholar
  37. Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20. doi: 10.1038/sj.bjp.0707395 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317. doi: 10.1038/sj.emboj.7600599 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Orioli M, Aldini G, Benfatto MC, Facino RM, Carini M (2007) HNE Michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC-MS/MS profiling in Zucker obese rats. Anal Chem 79:9174–9184. doi: 10.1021/ac7016184 CrossRefPubMedGoogle Scholar
  40. Peters V et al (2010) Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids 38:1607–1615. doi: 10.1007/s00726-009-0367-z CrossRefPubMedGoogle Scholar
  41. Peters V et al (2011) Anserine inhibits carnosine degradation but in human serum carnosinase (CN1) is not correlated with histidine dipeptide concentration. Clin Chim Acta 412:263–267. doi: 10.1016/j.cca.2010.10.016 CrossRefPubMedGoogle Scholar
  42. Peters V, Schmitt CP, Zschocke J, Gross ML, Brismar K, Forsberg E (2012) Carnosine treatment largely prevents alterations of renal carnosine metabolism in diabetic mice. Amino Acids 42:2411–2416. doi: 10.1007/s00726-011-1046-4 CrossRefPubMedGoogle Scholar
  43. Peters V et al (2014) Carnosine treatment in combination with ACE inhibition in diabetic rats. Regul Pept. doi: 10.1016/j.regpep.2014.09.005 PubMedGoogle Scholar
  44. Pfister F et al (2011) Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell Physiol Biochem 28:125–136. doi: 10.1159/000331721 CrossRefPubMedGoogle Scholar
  45. Pollock JS, Pollock DM (2011) Endothelin, nitric oxide, and reactive oxygen species in diabetic kidney disease. Contrib Nephrol 172:149–159. doi: 10.1159/000329054 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Riedl E et al (2010) N-glycosylation of carnosinase influences protein secretion and enzyme activity: implications for hyperglycemia. Diabetes 59:1984–1990. doi: 10.2337/db09-0868 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Riedl E et al (2011) Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell Physiol Biochem 28:279–288. doi: 10.1159/000331740 CrossRefPubMedGoogle Scholar
  48. Ruskovska T, Bernlohr DA (2013) Oxidative stress and protein carbonylation in adipose tissue—implications for insulin resistance and diabetes mellitus. J Proteomics. doi: 10.1016/j.jprot.2013.04.002 PubMedCentralPubMedGoogle Scholar
  49. Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832:2216–2231. doi: 10.1016/j.bbadis.2013.08.006 CrossRefPubMedGoogle Scholar
  50. Somineni HK, Boivin GP, Elased KM (2014) Daily exercise training protects against albuminuria and angiotensin converting enzyme 2 shedding in db/db diabetic mice. J Endocrinol 221:235–251. doi: 10.1530/joe-13-0532 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Stegen S et al (2015) Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men. PLoS One 10:e0121062. doi: 10.1371/journal.pone.0121062 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Tanida M, Shen J, Kubomura D, Nagai K (2010) Effects of anserine on the renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Physiol Res 59:177–185PubMedGoogle Scholar
  53. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6251–6531CrossRefGoogle Scholar
  54. Velez S, Nair NG, Reddy VP (2008) Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants Colloids and surfaces B. Biointerfaces 66:291–294. doi: 10.1016/j.colsurfb.2008.06.012 CrossRefPubMedGoogle Scholar
  55. Vistoli G et al (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4:967–975. doi: 10.1002/cmdc.200800433 CrossRefPubMedGoogle Scholar
  56. Voziyan P, Brown KL, Chetyrkin S, Hudson B (2014) Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin Chem Lab Med CCLM FESCC 52:39–45. doi: 10.1515/cclm-2012-0818 Google Scholar
  57. Wagner AH et al (2011) Tyrosine nitration limits stretch-induced CD40 expression and disconnects CD40 signaling in human endothelial cells. Blood 118:3734–3742. doi: 10.1182/blood-2010-11-320259 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Verena Peters
    • 1
  • Barbara Lanthaler
    • 2
  • Albert Amberger
    • 2
  • Thomas Fleming
    • 3
  • Elisabete Forsberg
    • 4
  • Markus Hecker
    • 5
  • Andreas H. Wagner
    • 5
  • Wyatt W. Yue
    • 6
  • Georg F. Hoffmann
    • 1
  • Peter Nawroth
    • 3
  • Johannes Zschocke
    • 2
    Email author
  • Claus P. Schmitt
    • 1
  1. 1.Centre for Paediatric and Adolescence MedicineUniversity of HeidelbergHeidelbergGermany
  2. 2.Division of Human GeneticsMedical University InnsbruckInnsbruckAustria
  3. 3.Internal MedicineUniversity HeidelbergHeidelbergGermany
  4. 4.Department of EndocrinologyKarolinska University HospitalStockholmSweden
  5. 5.Institute for Physiology and PathophysiologyUniversity HeidelbergHeidelbergGermany
  6. 6.Structural Genomics ConsortiumUniversity of OxfordOxfordUK

Personalised recommendations