Amino Acids

, Volume 47, Issue 8, pp 1533–1548 | Cite as

Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice

  • Junia C. Santos-Silva
  • Rosane Aparecida Ribeiro
  • Jean F. Vettorazzi
  • Esperanza Irles
  • Sarah Rickli
  • Patrícia C. Borck
  • Patricia M. Porciuncula
  • Ivan Quesada
  • Angel Nadal
  • Antonio C. Boschero
  • Everardo M. Carneiro
Original Article

Abstract

Taurine (Tau) regulates β-cell function and glucose homeostasis under normal and diabetic conditions. Here, we assessed the effects of Tau supplementation upon glucose homeostasis and the morphophysiology of endocrine pancreas, in leptin-deficient obese (ob) mice. From weaning until 90-day-old, C57Bl/6 and ob mice received, or not, 5 % Tau in drinking water (C, CT, ob and obT). Obese mice were hyperglycemic, glucose intolerant, insulin resistant, and exhibited higher hepatic glucose output. Tau supplementation did not prevent obesity, but ameliorated glucose homeostasis in obT. Islets from ob mice presented a higher glucose-induced intracellular Ca2+ influx, NAD(P)H production and insulin release. Furthermore, α-cells from ob islets displayed a higher oscillatory Ca2+ profile at low glucose concentrations, in association with glucagon hypersecretion. In Tau-supplemented ob mice, insulin and glucagon secretion was attenuated, while Ca2+ influx tended to be normalized in β-cells and Ca2+ oscillations were increased in α-cells. Tau normalized the inhibitory action of somatostatin (SST) upon insulin release in the obT group. In these islets, expression of the glucagon, GLUT-2 and TRPM5 genes was also restored. Tau also enhanced MafA, Ngn3 and NeuroD mRNA levels in obT islets. Morphometric analysis demonstrated that the hypertrophy of ob islets tends to be normalized by Tau with reductions in islet and β-cell masses, but enhanced δ-cell mass in obT. Our results indicate that Tau improves glucose homeostasis, regulating β-, α-, and δ-cell morphophysiology in ob mice, indicating that Tau may be a potential therapeutic tool for the preservation of endocrine pancreatic function in obesity and diabetes.

Keywords

Glucagon secretion Insulin secretion Obesity Somatostatin Taurine supplementation 

Notes

Acknowledgments

This study forms part of a PhD Thesis (JC Santos-Silva) and was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/54153-7), Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq 238836/2012-6) and Instituto Nacional de Obesidade e Diabetes (CNPq/FAPESP), Ministerio de Economia y competitividad BFU2011-28358 and Generalitat Valenciana PROMETEO/2011/080. The authors also thank Marise Carnelossi, Salomé Ramon and Maria Luisa Navarro for excellent technical assistance and Nicola Conran for editing English.

Conflict of interest

All contributing authors declare no conflicts of interest.

References

  1. Aguila MC, McCann SM (1985) Stimulation of somatostatin release from median eminence tissue incubated in vitro by taurine and related amino acids. Endocrinology 116(3):1158–1162. doi:10.1210/endo-116-3-1158 PubMedCrossRefGoogle Scholar
  2. Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 47(10):1831–1837. doi:10.1007/s00125-004-1535-z PubMedCrossRefGoogle Scholar
  3. Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B, Stein R (2006) MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 55(2):297–304PubMedCrossRefGoogle Scholar
  4. Baek YY, Cho DH, Choe J, Lee H, Jeoung D, Ha KS, Won MH, Kwon YG, Kim YM (2012) Extracellular taurine induces angiogenesis by activating ERK-, Akt-, and FAK-dependent signal pathways. Eur J Pharmacol 674(2–3):188–199. doi:10.1016/j.ejphar.2011.11.022 PubMedCrossRefGoogle Scholar
  5. Batista TM, Ribeiro RA, da Silva PM, Camargo RL, Lollo PC, Boschero AC, Carneiro EM (2013) Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 57(3):423–434. doi:10.1002/mnfr.201200345 PubMedCrossRefGoogle Scholar
  6. Bernardis LL, Patterson BD (1968) Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol 40(4):527–528PubMedCrossRefGoogle Scholar
  7. Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, Remacle C (2002) Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45(6):856–866. doi:10.1007/s00125-002-0833-6 PubMedCrossRefGoogle Scholar
  8. Bustamante J, Lobo MV, Alonso FJ, Mukala NT, Gine E, Solis JM, Tamarit-Rodriguez J, Martin Del Rio R (2001) An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab 281(6):E1275–E1285PubMedGoogle Scholar
  9. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339. doi:10.1073/pnas.0510790103 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carneiro EM, Latorraca MQ, Araujo E, Beltra M, Oliveras MJ, Navarro M, Berna G, Bedoya FJ, Velloso LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20(7):503–511. doi:10.1016/j.jnutbio.2008.05.008 PubMedCrossRefGoogle Scholar
  11. Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:37. doi:10.3389/fendo.2013.00037 CrossRefGoogle Scholar
  12. Chen NG, Tassava TM, Romsos DR (1993) Threshold for glucose-stimulated insulin secretion in pancreatic islets of genetically obese (ob/ob) mice is abnormally low. J Nutr 123(9):1567–1574PubMedGoogle Scholar
  13. Colsoul B, Jacobs G, Philippaert K, Owsianik G, Segal A, Nilius B, Voets T, Schuit F, Vennekens R (2014) Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models. Pflug Arch 466(3):611–621. doi:10.1007/s00424-013-1389-7 CrossRefGoogle Scholar
  14. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc Natl Acad Sci USA 107(11):5208–5213. doi:10.1073/pnas.0913107107 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258(2):296–308. doi:10.1016/j.taap.2011.11.009 PubMedCrossRefGoogle Scholar
  16. Gosmain Y, Katz LS, Masson MH, Cheyssac C, Poisson C, Philippe J (2012) Pax6 is crucial for beta-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol Endocrinol 26(4):696–709. doi:10.1210/me.2011-1256 PubMedCrossRefGoogle Scholar
  17. Gosmain Y, Marthinet E, Cheyssac C, Guerardel A, Mamin A, Katz LS, Bouzakri K, Philippe J (2010) Pax6 controls the expression of critical genes involved in pancreatic alpha cell differentiation and function. J Biol Chem 285(43):33381–33393. doi:10.1074/jbc.M110.147215 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gromada J, Hoy M, Buschard K, Salehi A, Rorsman P (2001a) Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J Physiol 535(Pt 2):519–532PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gromada J, Hoy M, Olsen HL, Gotfredsen CF, Buschard K, Rorsman P, Bokvist K (2001b) Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic alpha-cells. Pflug Arch 442(1):19–26CrossRefGoogle Scholar
  20. Gu C, Stein GH, Pan N, Goebbels S, Hornberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, Lee JE (2010) Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11(4):298–310. doi:10.1016/j.cmet.2010.03.006 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280(37):32413–32418. doi:10.1074/jbc.M506000200 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hart AW, Mella S, Mendrychowski J, van Heyningen V, Kleinjan DA (2013) The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS One 8(1):e54173. doi:10.1371/journal.pone.0054173 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hauge-Evans AC, Anderson RL, Persaud SJ, Jones PM (2012) Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia 55(7):1995–2004. doi:10.1007/s00125-012-2546-9 PubMedCrossRefGoogle Scholar
  24. Hauge-Evans AC, King AJ, Carmignac D, Richardson CC, Robinson IC, Low MJ, Christie MR, Persaud SJ, Jones PM (2009) Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58(2):403–411. doi:10.2337/db08-0792 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hellman B (2009) Pulsatility of insulin release—a clinically important phenomenon. Upsala J Med Sci 114(4):193–205. doi:10.3109/03009730903366075 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E (2009) Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 150(12):5334–5340. doi:10.1210/en.2009-0600 PubMedCrossRefGoogle Scholar
  27. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20(9):3292–3307PubMedCentralPubMedCrossRefGoogle Scholar
  28. Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS (2003) Increased islet apoptosis in Pdx1 ± mice. J Clin Investig 111(8):1147–1160. doi:10.1172/JCI16537 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Johnson JH, Ogawa A, Chen L, Orci L, Newgard CB, Alam T, Unger RH (1990) Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250(4980):546–549PubMedCrossRefGoogle Scholar
  30. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482 PubMedCrossRefGoogle Scholar
  31. Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, Rorsman P, Braun M (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am J Physiol Endocrinol Metab 303(9):E1107–E1116. doi:10.1152/ajpendo.00207.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M (2009) Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 61(7–8):489–496. doi:10.1016/j.addr.2008.12.015 PubMedCrossRefGoogle Scholar
  33. Kim KS, da Oh H, Kim JY, Lee BG, You JS, Chang KJ, Chung HJ, Yoo MC, Yang HI, Kang JH, Hwang YC, Ahn KJ, Chung HY, Jeong IK (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med 44(11):665–673. doi:10.3858/emm.2012.44.11.075 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lee E, Ryu GR, Ko SH, Ahn YB, Yoon KH, Ha H, Song KH (2011) Antioxidant treatment may protect pancreatic beta cells through the attenuation of islet fibrosis in an animal model of type 2 diabetes. Biochem Biophys Res Commun 414(2):397–402. doi:10.1016/j.bbrc.2011.09.087 PubMedCrossRefGoogle Scholar
  35. Lindstrom P (2010) beta-cell function in obese-hyperglycemic mice [ob/ob Mice]. Adv Exp Med Biol 654:463–477. doi:10.1007/978-90-481-3271-3_20 PubMedCrossRefGoogle Scholar
  36. Matsuoka TA, Kaneto H, Miyatsuka T, Yamamoto T, Yamamoto K, Kato K, Shimomura I, Stein R, Matsuhisa M (2010) Regulation of MafA expression in pancreatic beta-cells in db/db mice with diabetes. Diabetes 59(7):1709–1720. doi:10.2337/db08-0693 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37(19):3755–3760PubMedCrossRefGoogle Scholar
  38. Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 517(Pt 1):85–93PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nardelli TR, Ribeiro RA, Balbo SL, Vanzela EC, Carneiro EM, Boschero AC, Bonfleur ML (2011) Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids 41(4):901–908. doi:10.1007/s00726-010-0789-7 PubMedCrossRefGoogle Scholar
  40. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(Pt 1):9–24. doi:10.1113/jphysiol.2007.135871 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Ohneda M, Johnson JH, Inman LR, Chen L, Suzuki K, Goto Y, Alam T, Ravazzola M, Orci L, Unger RH (1993) GLUT2 expression and function in beta-cells of GK rats with NIDDM. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion. Diabetes 42(7):1065–1072PubMedCrossRefGoogle Scholar
  42. Pertusa JA, Nesher R, Kaiser N, Cerasi E, Henquin JC, Jonas JC (2002) Increased glucose sensitivity of stimulus-secretion coupling in islets from Psammomys obesus after diet induction of diabetes. Diabetes 51(8):2552–2560PubMedCrossRefGoogle Scholar
  43. Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM, Martin F, Nadal A, Soria B (2006) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55(9):2463–2469. doi:10.2337/db06-0272 PubMedCrossRefGoogle Scholar
  44. Quesada I, Tuduri E, Ripoll C, Nadal A (2008) Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 199(1):5–19. doi:10.1677/JOE-08-0290 PubMedCrossRefGoogle Scholar
  45. Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25(4):370–379. doi:10.1002/dmrr.959 PubMedCrossRefGoogle Scholar
  46. Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic beta-cells. Amino Acids 43(4):1791–1801. doi:10.1007/s00726-012-1263-5 PubMedCrossRefGoogle Scholar
  47. Ribeiro RA, Vanzela EC, Oliveira CA, Bonfleur ML, Boschero AC, Carneiro EM (2010) Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets. Br J Nutr 104(8):1148–1155. doi:10.1017/S0007114510001820 PubMedCrossRefGoogle Scholar
  48. Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686PubMedCentralPubMedGoogle Scholar
  49. Rukstalis JM, Habener JF (2009) Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets 1(3):177–184. doi:10.4161/isl.1.3.9877 PubMedCrossRefGoogle Scholar
  50. Sander M, Neubuser A, Kalamaras J, Ee HC, Martin GR, German MS (1997) Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev 11(13):1662–1673PubMedCrossRefGoogle Scholar
  51. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477. doi:10.1016/S0006-3495(99)77214-0 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sharma A, Olson LK, Robertson RP, Stein R (1995) The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol Endocrinol 9(9):1127–1134. doi:10.1210/mend.9.9.7491105 PubMedGoogle Scholar
  53. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM (2000) Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141(1):111–117. doi:10.1210/endo.141.1.7263 PubMedGoogle Scholar
  54. Tomita T, Doull V, Pollock HG, Krizsan D (1992) Pancreatic islets of obese hyperglycemic mice (ob/ob). Pancreas 7(3):367–375PubMedCrossRefGoogle Scholar
  55. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147(7):3276–3284. doi:10.1210/en.2005-1007 PubMedCrossRefGoogle Scholar
  56. Uchida K, Tominaga M (2011) The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr J 58(12):1021–1028PubMedCrossRefGoogle Scholar
  57. Unger RH, Orci L (2010) Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA 107(37):16009–16012. doi:10.1073/pnas.1006639107 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Vettorazzi JF, Ribeiro RA, Santos-Silva JC, Borck PC, Batista TM, Nardelli TR, Boschero AC, Carneiro EM (2014) Taurine supplementation increases K channel protein content, improving Ca handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids. doi:10.1007/s00726-014-1763-6 PubMedGoogle Scholar
  59. Walker JN, Ramracheya R, Zhang Q, Johnson PR, Braun M, Rorsman P (2011) Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes Metab 13(Suppl 1):95–105. doi:10.1111/j.1463-1326.2011.01450.x PubMedCrossRefGoogle Scholar
  60. Wen JH, Chen YY, Song SJ, Ding J, Gao Y, Hu QK, Feng RP, Liu YZ, Ren GC, Zhang CY, Hong TP, Gao X, Li LS (2009) Paired box 6 (PAX6) regulates glucose metabolism via proinsulin processing mediated by prohormone convertase 1/3 (PC1/3). Diabetologia 52(3):504–513. doi:10.1007/s00125-008-1210-x PubMedCrossRefGoogle Scholar
  61. Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, Kudo T, Engel JD, Yamamoto M, Takahashi S (2005) MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25(12):4969–4976. doi:10.1128/MCB.25.12.4969-4976.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632. doi:10.1038/nature07314 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Junia C. Santos-Silva
    • 1
  • Rosane Aparecida Ribeiro
    • 2
  • Jean F. Vettorazzi
    • 1
  • Esperanza Irles
    • 3
  • Sarah Rickli
    • 1
  • Patrícia C. Borck
    • 1
  • Patricia M. Porciuncula
    • 1
  • Ivan Quesada
    • 3
  • Angel Nadal
    • 3
  • Antonio C. Boschero
    • 1
  • Everardo M. Carneiro
    • 1
  1. 1.Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, e Centro de Pesquisa em Obesidade e ComorbidadesUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Universidade Federal do Rio de Janeiro, NUPEM, Campus UFRJ-MacaéMacaéBrazil
  3. 3.Instituto de Bioingeniería y Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEMUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations