Amino Acids

, Volume 47, Issue 2, pp 429–434 | Cite as

Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel

  • Pedro Beltran-AlvarezEmail author
  • Ferran Feixas
  • Sílvia Osuna
  • Rubí Díaz-Hernández
  • Ramon BrugadaEmail author
  • Sara PagansEmail author
Short Communication


Arginine methylation is a novel post-translational modification within the voltage-gated ion channel superfamily, including the cardiac sodium channel, NaV1.5. We show that NaV1.5 R513 methylation decreases S516 phosphorylation rate by 4 orders of magnitude, the first evidence of protein kinase A inhibition by arginine methylation. Reciprocally, S516 phosphorylation blocks R513 methylation. NaV1.5 p.G514C, associated to cardiac conduction disease, abrogates R513 methylation, while leaving S516 phosphorylation rate unchanged. This is the first report of methylation–phosphorylation cross-talk of a cardiac ion channel.


Sodium channel Post-translational modification Arginine methylation Phosphorylation Cross-talk 



Matrix-assisted laser desorption–ionization time of flight


Voltage-gated sodium channel, cardiac isoform, α subunit


cAMP-dependent protein kinase


Protein arginine methyltransferase





The clone for expression of PRMT3 as GST fusion was a gift from Alexsandra Espejo and Mark. T. Bedford (MD Anderson Cancer Center). We thank Ariel Escobar (UC Merced), Guillermo Pérez, and Fabiana Scornik (University of Girona) for critical reading of the manuscript. Peptide synthesis was performed by Javier Valle and David Andreu (Laboratory of Proteomics and Protein Chemistry, University Pompeu Fabra, Barcelona). We thank Antonia Odena and Eliandre de Oliveira (Proteomics Platform, University of Barcelona, member of the ProteoRed-ISCIII network), and Guadalupe Espadas, Jenny G. Donoso and Eduard Sabidó (CRG/UPF Proteomics Unit) for help with LC–MS/MS analyses. This work was funded by Fundació Obra Social La Caixa, Spanish Government [SAF2011-27627, CTQ2011-25086/BQU)], and European Community [PCIG14-GA-2013-630978]. PB-A acknowledges a Sara Borrell fellowship [CD10/00275], SO a JdC contract [JCI-2012-14438] and FF a Beatriu de Pinós fellowship [BP-2010-A2_00022].

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2014_1890_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1378 kb)


  1. Baek JH, Rubinstein M, Scheuer T, Trimmer JS (2014) Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures. J Biol Chem 289(22):15363–15373PubMedCrossRefGoogle Scholar
  2. Beltran-Alvarez P, Pagans S, Brugada R (2011) The cardiac sodium channel is post-translationally modified by arginine methylation. J Proteome Res 10:3712–3719PubMedCrossRefGoogle Scholar
  3. Beltran-Alvarez P, Espejo A, Schmauder R, Beltran C, Mrowka R, Linke T, Batlle M, Pérez-Villa F, Pérez GJ, Scornik FS, Benndorf K, Pagans S, Zimmer T, Brugada R (2013) Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel. FEBS Lett 587:3159–3165PubMedCrossRefGoogle Scholar
  4. Beltran-Alvarez P, Tarradas A, Chiva C, Pérez-Serra A, Batlle M, Pérez-Villa F, Schulte U, Sabidó E, Brugada R, Pagans S. (2014) Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J Mol Cell Cardiol 76C:126–129Google Scholar
  5. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13:372–387PubMedCentralPubMedCrossRefGoogle Scholar
  6. Herren AW, Bers DM, Grandi E (2013) Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. Am J Physiol Heart Circ Physiol 305:H431–H445PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC (2011) Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 13:174–181PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kang JH, Kuramoto M, Tsuchiya A, Toita R, Asai D, Sato YT, Mori T, Niidome T, Katayama Y (2008) Letter: correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis and enzyme kinetics. Eur J Mass Spectrom (Chichester, Eng) 14:261–265Google Scholar
  9. Kölbel K, Ihling C, Bellmann-Sickert K, Neundorf I, Beck-Sickinger AG, Sinz A, Kühn U, Wahle E (2009) Type I Arginine Methyltransferases PRMT1 and PRMT-3 Act Distributively. J Biol Chem 284:8274–8282PubMedCentralPubMedCrossRefGoogle Scholar
  10. Marionneau C, Lichti CF, Lindenbaum P, Charpentier F, Nerbonne JM, Townsend RR, Mérot J (2012) Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites. J Proteome Res 11:5994–6007PubMedCentralPubMedGoogle Scholar
  11. Pahlich S, Bschir K, Chiavi C, Belyanskaya L, Gehring H (2005) Different methylation characteristics of protein arginine methyltransferase 1 and 3 toward the Ewing Sarcoma protein and a peptide. Proteins. 61:164–175PubMedCrossRefGoogle Scholar
  12. Pang CN, Gasteiger E, Wilkins MR (2010) Identification of arginine and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genom 11:92CrossRefGoogle Scholar
  13. Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A (2011) Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci USA 108:6085–6090PubMedCentralPubMedCrossRefGoogle Scholar
  14. Sims RJ 3rd, Rojas LA, Beck D, Bonasio R, Schüller R, Drury WJ 3rd, Eick D, Reinberg D (2011) The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332:99–103PubMedCentralPubMedCrossRefGoogle Scholar
  15. Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics 5:172–181PubMedCrossRefGoogle Scholar
  16. Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA, Balser JR (2001) A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409:1043–1047PubMedCrossRefGoogle Scholar
  17. Tang J, Gary JD, Clarke S, Herschman HR (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273:16935–16945PubMedCrossRefGoogle Scholar
  18. Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG (2012) Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J Biol Chem 287:7859–7870PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona Dr. Josep TruetaUniversity of GironaGironaSpain
  2. 2.Department of Medical Sciences, School of MedicineUniversity of GironaGironaSpain
  3. 3.Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain

Personalised recommendations