Advertisement

Amino Acids

, Volume 46, Issue 12, pp 2759–2766 | Cite as

Melittin peptides exhibit different activity on different cells and model membranes

  • Elaheh Jamasbi
  • Steven Batinovic
  • Robyn A. Sharples
  • Marc-Antoine Sani
  • Roy Michael Robins-Browne
  • John D. Wade
  • Frances Separovic
  • Mohammed Akhter Hossain
Original Article

Abstract

Melittin (MLT) is a lytic peptide with a broad spectrum of activity against both eukaryotic and prokaryotic cells. To understand the role of proline and the thiol group of cysteine in the cytolytic activity of MLT, native MLT and cysteine-containing analogs were prepared using solid phase peptide synthesis. The antimicrobial and cytolytic activities of the monomeric and dimeric MLT peptides against different cells and model membranes were investigated. The results indicated that the proline residue was necessary for antimicrobial activity and cytotoxicity and its absence significantly reduced lysis of model membranes and hemolysis. Although lytic activity against model membranes decreased for the MLT dimer, hemolytic activity was increased. The native peptide and the MLT-P14C monomer were mainly unstructured in buffer while the dimer adopted a helical conformation. In the presence of neutral and negatively charged vesicles, the helical content of the three peptides was significantly increased. The lytic activity, therefore, is not correlated to the secondary structure of the peptides and, more particularly, on the propensity to adopt helical conformation.

Keywords

Melittin Antimicrobial peptide Cytotoxicity Hemolysis Dye leakage 

Notes

Acknowledgments

We acknowledge partial support of the studies undertaken in the authors’ laboratory by the Australian Research Council (DP150103522) to MAH and JDW. Research at the FNI was supported by the Victorian Government’s Operational Infrastructure Support Program. EJ thanks the University of Melbourne for an MIRS.

Conflict of interest

The authors have no conflict of interest.

References

  1. Anaya-Lopez JL, Lopez-Meza JE, Ochoa-Zarzosa A (2013) Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 39(2):180–195PubMedCrossRefGoogle Scholar
  2. Anderson RL, Davis S (1982) An organic phosphorus assay which avoids the use of hazardous perchloric acid. Clin Chim Acta 121(1):111–116PubMedCrossRefGoogle Scholar
  3. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279(53):55042–55050PubMedCrossRefGoogle Scholar
  4. Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33(2):109–116PubMedCrossRefGoogle Scholar
  5. Beveridge TJ (1999) Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733PubMedCentralPubMedGoogle Scholar
  6. Burton MG, Huang QM, Hossain MA, Wade JD, Clayton AHA, Gee ML (2013) Long-time-scale interaction dynamics between a model antimicrobial peptide and giant unilamellar vesicles. Langmuir 29(47):14613–14621PubMedCrossRefGoogle Scholar
  7. Dempsey CE, Bazzo R, Harvey TS, Syperek I, Boheim G, Campbell ID (1991) Contribution of proline-14 to the structure and actions of melittin. FEBS Lett 281(1–2):240–244PubMedCrossRefGoogle Scholar
  8. Fernandez DI, Lee T-H, Sani M-A, Aguilar M-I, Separovic F (2013) Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Biophys J 104(7):1495–1507PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ferre R, Melo MN, Correia AD, Feliu L, Bardaji E, Planas M, Castanho M (2009) Synergistic effects of the membrane actions of cecropin–melittin antimicrobial hybrid peptide BP100. Biophys J 96(5):1815–1827PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gajski G, Garaj-Vrhovac V (2013) Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 36(2):697–705PubMedCrossRefGoogle Scholar
  11. Gali H, Sieckman GL, Hoffman TJ, Owen NK, Mazuru DG, Forte LR, Volkert WA (2002) Chemical synthesis of Escherichia Coli STh analogues by regioselective disulfide bond formation: biological evaluation of an 111In-DOTA-Phe19-STh analogue for specific targeting of human colon cancers. Bioconjug Chem 13(2):224–231PubMedCrossRefGoogle Scholar
  12. Gehman J, Luc F, Hall K, Lee T-H, Boland M, Pukala T, Bowie J, Aguilar M-I, Separovic F (2008) Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 47(33):8557–8565PubMedCrossRefGoogle Scholar
  13. Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36(47):14291–14305PubMedCrossRefGoogle Scholar
  14. Hall K, Lee TH, Aguilar MI (2011) The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit 24(1):108–118PubMedCrossRefGoogle Scholar
  15. Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophy J 36(4–5):305–314CrossRefGoogle Scholar
  16. Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9(3):e91007PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hincha DK, Crowe JH (1996) The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta 1284(2):162–170PubMedCrossRefGoogle Scholar
  18. Hyun-Ji C, Jeong-Han K, Kwan-Kyu P, Jung-Yoon C, Yoon-Yub P, Yong-Suk M, Il-Kyung C, Hyeun-Wook C, Cheorl-Ho K, Yung Hyun C, Wun-Jae K, Sung-Kwon M, Young-Chae C (2013) Comparative proteome analysis of tumor necrosis factor α-stimulated human vascular smooth muscle cells in response to melittin. Proteome Sci 11:20CrossRefGoogle Scholar
  19. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3 Pt 1):381–390PubMedCrossRefGoogle Scholar
  20. Jackson KE, Spielmann T, Hanssen E, Adisa A, Separovic F, Dixon MW, Trenholme KR, Hawthorne PL, Gardiner DL, Gilberger T, Tilley L (2007) Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem J 403(1):167–175PubMedCentralPubMedCrossRefGoogle Scholar
  21. John E, Jähnig F (1993) A synthetic analogue of melittin aggregates in large oligomers. Biophys J 63(6):1536CrossRefGoogle Scholar
  22. Johnson JW, Fisher JF, Mobashery S (2013) Bacterial cell-wall recycling. Ann NY Acad Sci 1277:54–75PubMedCentralPubMedCrossRefGoogle Scholar
  23. Juba M, Porter D, Dean S, Gillmor S, Bishop B (2013) Characterization and performance of short cationic antimicrobial peptide isomers. Pept Sci 100(4):387–401CrossRefGoogle Scholar
  24. Khatun UL, Mukhopadhyay C (2013) Interaction of bee venom toxin melittin with ganglioside GM1 bicelle. Biophys Chem 180–181:66–75PubMedCrossRefGoogle Scholar
  25. Klocek G, Seelig J (2008) Melittin interaction with sulfated cell surface sugars. Biochemistry 47(9):2841–2849PubMedCrossRefGoogle Scholar
  26. Lad MD, Birembaut F, Clifton LA, Frazier RA, Webster JR, Green RJ (2007) Antimicrobial peptide–lipid binding interactions and binding selectivity. Biophys J 92(10):3575–3586PubMedCentralPubMedCrossRefGoogle Scholar
  27. Lam YH, Wassall SR, Morton CJ, Smith R, Separovic F (2001) Solid-state NMR structure determination of melittin in a lipid environment. Biophys J 81:2752–2761PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lam YH, Morton J, Separovic F (2002) Solid-state NMR conformational studies of a melittin-inhibitor complex. Eur Biophys J 31(5):383PubMedCrossRefGoogle Scholar
  29. Lee TH, Heng C, Swann MJ, Gehman JD, Separovic F, Aguilar MI (2010) Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Biochim Biophys Acta Biomembr 1798(10):1977–1986CrossRefGoogle Scholar
  30. Lee J, Lee D, Choi H, Kim HH, Kim H, Hwang JS, Lee DG, Kim JI (2014) Synthesis and antimicrobial activity of cysteine-free coprisin nonapeptides. Biochem Biophys Res Commun 443(2):483–488PubMedCrossRefGoogle Scholar
  31. Lorenzon EN, Cespedes GF, Vicente EF, Nogueira LG, Bauab TM, Castro MS, Cilli EM (2012) Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob Agents Chemother 56(6):3004–3010PubMedCentralPubMedCrossRefGoogle Scholar
  32. Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374Google Scholar
  33. Maruyama K, Nagasawa H, Suzuki A (1999) 2,2′-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides 20(7):881–884PubMedCrossRefGoogle Scholar
  34. Ningsih Z, Hossain MA, Wade JD, Clayton AH, Gee ML (2012) Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles. Langmuir 28(4):2217–2224PubMedCrossRefGoogle Scholar
  35. Popham DL (2013) Visualizing the production and arrangement of peptidoglycan in Gram-positive cells. Mol Microbiol 88(4):645–649PubMedCrossRefGoogle Scholar
  36. Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87(4):2419–2432PubMedCentralPubMedCrossRefGoogle Scholar
  37. Raghuraman H, Chattopadhyay A (2007) Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophys J 92(4):1271–1283PubMedCentralPubMedCrossRefGoogle Scholar
  38. Rapson AC, Hossain MA, Wade JD, Nice EC, Smith TA, Clayton AH, Gee ML (2011) Structural dynamics of a lytic peptide interacting with a supported lipid bilayer. Biophys J 100(5):1353–1361PubMedCentralPubMedCrossRefGoogle Scholar
  39. Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547PubMedCrossRefGoogle Scholar
  40. Rivett DE, Kirkpatrick A, Hewish DR, Reilly W, Werkmeister JA (1996) Dimerization of truncated melittin analogues results in cytolytic peptides. Biochem J 316(Pt 2):525–529PubMedCentralPubMedGoogle Scholar
  41. Sani MA, Whitwell TC, Gehman JD, Robins-Browne RM, Pantarat N, Attard TJ, Reynolds EC, O’Brien-Simpson NM, Separovic F (2013) Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via a pore mechanism. Antimicrob Agents Chemother 57(8):3593–3600PubMedCentralPubMedCrossRefGoogle Scholar
  42. Scholtz JM, Qian H, York EJ, Stewart JM, Baldwin RL (1991) Parameters of helix–coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31(13):1463–1470PubMedCrossRefGoogle Scholar
  43. Schubert D, Pappert G, Boss K (1985) Does dimeric melittin occur in aqueous solutions? Biophys J 48(2):327–329PubMedCentralPubMedCrossRefGoogle Scholar
  44. Sessa G, Freer JH, Colacicc G, Weissman G (1969) Interaction of a lytic polypeptide, melittin, with lipid membrane systems. J Biol Chem 244(13):3575–3582PubMedGoogle Scholar
  45. Takei J, Reményi A, Clarke AR, Dempsey CE (1998) Self-association of disulfide-dimerized melittin analogues. Biochemistry 37(16):5699–5708PubMedCrossRefGoogle Scholar
  46. Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257(11):6016–6022PubMedGoogle Scholar
  47. Tomoyoshi T, Fumimasa N, Yasunori Y, Yohko T-T, Michio H, Kingo T (2013) Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins 5(4):637–664CrossRefGoogle Scholar
  48. Tosteson MT, Levy JJ, Caporale LH, Rosenblatt M, Tosteson DC (1987) Solid-phase synthesis of melittin: purification and functional characterization. Biochemistry 26(21):6627–6631PubMedCrossRefGoogle Scholar
  49. Wade JD, Lin F, Hossain MA, Dawson R (2012) Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids 43(6):2279–2283PubMedCrossRefGoogle Scholar
  50. Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev 45(2):211–243PubMedCentralPubMedGoogle Scholar
  51. Zhao Z, Rolli H, Schneider CH (1995) Immunogenicity of dinitrocarboxyphenylated melittin: the influence of C-terminal chain shortening, N-terminal substitution and prolin insertion at positions 5 and 10. J Pept Sci 1(2):140–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Elaheh Jamasbi
    • 1
  • Steven Batinovic
    • 2
  • Robyn A. Sharples
    • 2
  • Marc-Antoine Sani
    • 1
  • Roy Michael Robins-Browne
    • 3
    • 4
  • John D. Wade
    • 1
    • 5
  • Frances Separovic
    • 1
  • Mohammed Akhter Hossain
    • 1
    • 5
  1. 1.School of Chemistry, Bio21 InstituteUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Biochemistry and Molecular Biology, Bio21 InstituteUniversity of MelbourneMelbourneAustralia
  3. 3.Department of Microbiology and Immunology, Peter Doherty InstituteUniversity of MelbourneMelbourneAustralia
  4. 4.Murdoch Childrens Research Institute, Royal Children’s HospitalParkvilleAustralia
  5. 5.The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia

Personalised recommendations