Advertisement

Amino Acids

, Volume 46, Issue 11, pp 2561–2571 | Cite as

Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers

  • C. B. Falcao
  • B. G. de La Torre
  • C. Pérez-Peinado
  • A. E. Barron
  • D. Andreu
  • G. Rádis-Baptista
Original Article

Abstract

Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides—also called antimicrobial peptides (AMPs)—expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)—distant relatives of Asian cobras and kraits, previously shown to express cathelicidins—and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.

Keywords

Venom peptides Antimicrobial peptides Reptilian CRAMPs Vipericidins Peptide synthesis Therapeutic peptide 

Notes

Acknowledgments

Research at Federal University of Ceará supported by the Brazilian National Council for Scientific and Technological Development (CNPq), by the Ministry of Science and Technology, and by the Coordination for the Improvement of Higher Education Personnel (CAPES). Research at Pompeu Fabra University supported by the Spanish Ministry of Science and Innovation (SAF 2011-24899) and by Generalitat de Catalunya (SGR2009-00492). Mobility support from the European Commission, Marie Curie Actions—International Research Staff Exchange Scheme (no. 247513, MEMPEPACROSS), is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2014_1801_MOESM1_ESM.tif (373 kb)
Supplementary material 1 (TIFF 373 kb)
726_2014_1801_MOESM2_ESM.doc (106 kb)
Supplementary material 2 (DOC 105 kb)
726_2014_1801_MOESM3_ESM.doc (35 kb)
Supplementary material 3 (DOC 35 kb)
726_2014_1801_MOESM4_ESM.doc (35 kb)
Supplementary material 4 (DOC 35 kb)

References

  1. Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433PubMedCrossRefGoogle Scholar
  2. Bals R, Wilson JM (2003) Cathelicidins: a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60:711–720PubMedCrossRefGoogle Scholar
  3. Barlow A, Pook CE, Harrison RA, Wüster W (2009) Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 276:2443–2449PubMedCrossRefPubMedCentralGoogle Scholar
  4. Brandenburg L-O, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, Wruck CJ, Schroëder J-M, Pufe T, Lucius R (2008) Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 67:1041–1054PubMedCrossRefGoogle Scholar
  5. Brusselaers N, Vogelaers D, Blot S (2011) The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 1:47PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chang CI, Zhang YA, Zou J et al (2006) Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Antimicrob Agents Chemother 50:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cole AM, Lehrer RI (2003) Minidefensins: antimicrobial peptides with activity against HIV-1. Curr Pharm Des 9:1463–1473PubMedCrossRefGoogle Scholar
  8. Cury Y, Picolo G (2006) Animal toxins as analgesics: an overview. Drug News Perspect 19:381–392PubMedCrossRefGoogle Scholar
  9. Da Silva AP, Unks D, Lyu SC, Ma J, Zbozien-Pacamaj R, Chen X et al (2008) In vitro and in vivo antimicrobial activity of granulysin-derived peptides against Vibrio cholerae. J Antimicrob Chemother 61:1103–1109PubMedCrossRefPubMedCentralGoogle Scholar
  10. Dürr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425PubMedCrossRefGoogle Scholar
  11. Fox JW, Serrano SM (2007) Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des 13:2927–2934PubMedCrossRefGoogle Scholar
  12. Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263PubMedCrossRefGoogle Scholar
  13. Hao X, Yang H, Wei L, Yang S, Zhu W, Ma D, Yu H, Lai R (2012) Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 43:677–685PubMedCrossRefGoogle Scholar
  14. Hoffmann MH, Bruns H, Bäckdahl L, Neregård P, Niederreiter B, Herrmann M, Catrina AI, Agerberth B, Holmdahl R (2013) The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Ann Rheum Dis 72:1239–1248PubMedCrossRefGoogle Scholar
  15. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511PubMedCrossRefPubMedCentralGoogle Scholar
  16. Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY Jr, Ho PL, Diniz MR (2006) Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 173:877–889PubMedCrossRefPubMedCentralGoogle Scholar
  17. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802PubMedCrossRefGoogle Scholar
  18. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–315PubMedCrossRefGoogle Scholar
  19. Lu Y, Ma Y, Wang X, Liang J, Zhang C et al (2008) The first antimicrobial peptide from sea amphibian. Mol Immunol 45:678–681PubMedCrossRefGoogle Scholar
  20. Lynn DJ, Higgs R, Gaines S et al (2004) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170–177PubMedCrossRefGoogle Scholar
  21. Mangoni ML (2011) Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 68:2157–2159PubMedCrossRefGoogle Scholar
  22. Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374PubMedCrossRefGoogle Scholar
  23. Mirshafiey A (2007) Venom therapy in multiple sclerosis. Neuropharmacology 53:353–361PubMedCrossRefGoogle Scholar
  24. Morizane S, Gallo RL (2012) Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol 39:225–330PubMedCrossRefPubMedCentralGoogle Scholar
  25. Mortari MR, Cunha AO, Ferreira LB, dos Santos WF (2007) Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther 114:171–183PubMedCrossRefGoogle Scholar
  26. Nawarak J, Sinchaikul S, Wu CY, Liau MY, Phutrakul S, Chen ST (2003) Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis 24:2838–2854PubMedCrossRefGoogle Scholar
  27. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341:501–513PubMedCrossRefPubMedCentralGoogle Scholar
  28. Radis-Baptista G (2011) Molecular toxinology—Cloning toxin genes for addressing functional analysis and disclosing drug leads. In: Brown G (ed) Molecular cloning, selected applications in medicine and biology. InTech, Rijeka, pp 161–196Google Scholar
  29. Ramanathan B, Davis EG, Ross CR et al (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372PubMedCrossRefGoogle Scholar
  30. Rocha e Silva M, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 156:261–273 PubMedGoogle Scholar
  31. Saar K, Lindgren M, Hansen M, Eiríksdóttir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel Ü (2005) Cell-penetrating peptides: A comparative membrane toxicity study. Anal Biochem 345:55–65Google Scholar
  32. Sabatier JM (2011) Animal venoms: from deadly arsenals (toxins) to therapeutic drug candidates. Inflamm Allergy Drug Targets 10:312PubMedCrossRefGoogle Scholar
  33. Sambrook J, Russel DW (2011) Molecular cloning: a laboratory manual. CSHL Press, New YorkGoogle Scholar
  34. Tomasinsig L, Zanetti M (2005) The cathelicidins–structure, function and evolution. Curr Protein Pept Sci 6:23–34PubMedCrossRefGoogle Scholar
  35. Torrent M, Pulido D, Rivas L, Andreu D (2012) Antimicrobial peptide action on parasites. Curr Drug Targets 13:1138–1147PubMedCrossRefGoogle Scholar
  36. Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notredame C, Boix E, Andreu D (2013a) AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:130–131CrossRefGoogle Scholar
  37. Torrent M, Pulido D, Valle J, Nogués MV, Andreu D, Boix E (2013b) Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem J 456:99–108PubMedCrossRefGoogle Scholar
  38. Tossi A, Sandri L (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8:743–761PubMedCrossRefGoogle Scholar
  39. Uzzell T, Stolzenberg ED, Shinnar AE et al (2003) Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 24:1655–1667PubMedCrossRefGoogle Scholar
  40. Wang X, Song Y, Li J, Liu H, Xu X et al (2007) A new family of antimicrobial peptides from skin secretions of Rana pleuraden. Peptides 28:2069–2074PubMedCrossRefGoogle Scholar
  41. Wang Y, Hong J, Liu X et al (2008) Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 3:e3217PubMedCrossRefPubMedCentralGoogle Scholar
  42. Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, Dou J, Zhou C (2013) BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol 707:1–10PubMedCrossRefGoogle Scholar
  43. Watters MR (2005) Tropical marine neurotoxins: venoms to drugs. Semin Neurol 25:278–289PubMedCrossRefGoogle Scholar
  44. Zaenker KS (2011) Wedding bells: animal venoms and therapeutic drug candidate. Inflamm Allergy Drug Targets 10:311PubMedCrossRefGoogle Scholar
  45. Wong JH, Ye XJ, Ng TB (2013) Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr Protein Pept Sci 14:504–514PubMedCrossRefGoogle Scholar
  46. Xiao Y, Cai Y, Bommineni YR et al (2006) Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 281:2858–2867PubMedCrossRefGoogle Scholar
  47. Yamasaki K, Gallo RL (2011) Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc 15:12–15PubMedCrossRefGoogle Scholar
  48. Zaiou M, Gallo RL (2002) Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl) 80:549–561CrossRefGoogle Scholar
  49. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48PubMedCrossRefGoogle Scholar
  50. Zanetti M, Litteri L, Gennaro R, Horstmann H, Romeo D (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J Cell Biol 111:1363–1371PubMedCrossRefGoogle Scholar
  51. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5PubMedCrossRefGoogle Scholar
  52. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  53. Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S et al (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem 281:19861–19871PubMedCrossRefGoogle Scholar
  54. Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH et al (2008) Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 29:1685–1691PubMedCrossRefGoogle Scholar
  55. Zhu S, Gao B (2013) Evolutionary origin of β-defensins. Dev Comp Immunol 39:79–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • C. B. Falcao
    • 1
    • 2
  • B. G. de La Torre
    • 1
  • C. Pérez-Peinado
    • 1
  • A. E. Barron
    • 3
  • D. Andreu
    • 1
  • G. Rádis-Baptista
    • 1
    • 2
  1. 1.Department of Experimental and Health SciencesPompeu Fabra UniversityBarcelonaSpain
  2. 2.Laboratory of Biochemistry and Biotechnoloy, Institute for Marine SciencesFederal University of CearáFortalezaBrazil
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations