Advertisement

Amino Acids

, Volume 46, Issue 10, pp 2403–2413 | Cite as

Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine

  • Wenkai Ren
  • Jielin Duan
  • Jie Yin
  • Gang Liu
  • Zhong Cao
  • Xia XiongEmail author
  • Shuai Chen
  • Tiejun Li
  • Yulong Yin
  • Yongqing Hou
  • Guoyao Wu
Original Article

Abstract

This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.

Keywords

Glutamine Paneth cell Firmicutes NF-κB Innate immunity 

Abbreviations

AKT

Protein kinase B

Ang4

RNase angiogenin 4

Crs

Cryptdin-related sequence

Ifn

Interferon

Il

Interleukin

Lyz2

Lysozyme 2

MAPK

Mitogen-activated protein kinases

Muc

Mucin

Myd88

Myeloid differentiation factor-88

NF-κB

Nuclear factor kappa B

PI3K

Phosphoinositide-3-kinases

Reg3γ

Regenerating islet-derived 3 gamma

Spla2

Secretory group II A phospholipase A2

Tnf

Tumor necrosis factor

Tlrs

Toll-like receptors

Notes

Acknowledgments

This study was supported by the National Basic Research Program of China (2013CB127301, 2012CB124704, 2012CB126305), NSFC (31330075, 31101729, 31301989, 31101730, 31201813, 31301988), Hunan Provincial Natural Science Foundation of China (13JJ2034), Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (No. 2013CL06), Changsha University of Science & Technology, P. R. China, Hubei Provincial Research and Development Program (Grant No. 2010BB023), Natural Science Foundation of Hubei Province (No. 2012FFB04805), Hubei One Hundred Talent Program, and Texas A&M AgriLife Research (H-82000).

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Battersby AJ, Gibbons DL (2013) The gut mucosal immune system in the neonatal period. Pediatr Allergy Immunol. doi: 10.1111/pai.12079 PubMedGoogle Scholar
  2. Ben DF, Yu XY, Ji GY et al (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia–reperfusion. J Surg Res 174:326–333PubMedCrossRefGoogle Scholar
  3. Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825PubMedCrossRefGoogle Scholar
  4. Bergstrom KS, Kissoon-Singh V, Gibson DL et al (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6(5):e1000902PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368PubMedCrossRefGoogle Scholar
  6. Charania MA, Laroui H, Liu H et al (2013) Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect Immun 81:923–934PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chen Q, Powell DW, Rane MJ et al (2003) Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 170:5302–5308PubMedCrossRefGoogle Scholar
  8. Chen S, Liu SP, Zhang FM et al (2014) Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids. doi: 10.1007/s00726-014-1789-9
  9. Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477–481PubMedCrossRefGoogle Scholar
  10. Clevers H (2012) The Paneth cell, caloric restriction, and intestinal integrity. N Engl J Med 367:1560–1561PubMedCrossRefGoogle Scholar
  11. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159PubMedCrossRefGoogle Scholar
  12. Dai ZL, Zhang J, Wu G et al (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215PubMedCrossRefGoogle Scholar
  13. Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786CrossRefGoogle Scholar
  14. Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608PubMedCrossRefGoogle Scholar
  15. Dai ZL, Li XL, Xi PB et al (2012b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244PubMedCrossRefGoogle Scholar
  16. Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512PubMedCrossRefGoogle Scholar
  17. Dai ZL, Wu ZL, Jia SC et al (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B. doi: 10.1016/j.jchromb.2014.03.025 Google Scholar
  18. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ewaschuk JB, Murdoch GK, Johnson IR et al (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877PubMedCrossRefGoogle Scholar
  20. Forman RA, deSchoolmeester ML, Hurst RJ et al (2012) The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One 7(9):e42248PubMedCrossRefPubMedCentralGoogle Scholar
  21. Garcia-Miguel M, Gonzalez MJ, Quera R et al (2013) Innate immunity modulation by the IL-33/ST2 system in intestinal mucosa. Bio Med Res Int 2013:142492. doi: 10.1155/2013/142492 Google Scholar
  22. Geremia A, Biancheri P, Allan P et al (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10PubMedCrossRefGoogle Scholar
  23. Gyires K, Toth VE, Zadori ZS (2013) Gut inflammation: current update on pathophysiology, molecular mechanism and pharmacological treatment modalities. Curr Pharm Des 20(7):1063–1081Google Scholar
  24. Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142PubMedCrossRefGoogle Scholar
  25. Hodin CM, Visschers RG, Rensen SS et al (2012) Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr 142:2141–2147PubMedCrossRefGoogle Scholar
  26. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedCrossRefGoogle Scholar
  27. Hou YQ, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242PubMedCrossRefGoogle Scholar
  28. Hou YQ, Wang L, Yi D et al (2013) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522PubMedCrossRefGoogle Scholar
  29. Hou YQ, Wang L, Yi D et al (2014) Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid. Br J Nutr 111:1748–1758PubMedCrossRefGoogle Scholar
  30. Jager S, Stange EF, Wehkamp J (2013) Inflammatory bowel disease: an impaired barrier disease. Langenbeck’s Arch Surg 398:1–12CrossRefGoogle Scholar
  31. Johnson IR, Ball RO, Baracos VE et al (2006) Glutamine supplementation influences immune development in the newly weaned piglet. Dev Comp Immunol 30:1191–1202PubMedCrossRefGoogle Scholar
  32. Karin M, Lin A (2002) NF-kappa B at the crossroads of life and death. Nat Immunol 3:221–227PubMedCrossRefGoogle Scholar
  33. King SL, Dekaney CM (2013) Small intestinal stem cells. Curr Opin Gastroenterol 29:140–145PubMedCrossRefGoogle Scholar
  34. Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075PubMedCrossRefPubMedCentralGoogle Scholar
  35. Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252PubMedCrossRefGoogle Scholar
  36. Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 68:3661–3673PubMedCrossRefGoogle Scholar
  37. Mondello S, Italiano D, Giacobbe MS et al (2010) Glutamine-supplemented total parenteral nutrition improves immunological status in anorectic patients. Nutrition 26:677–681PubMedCrossRefGoogle Scholar
  38. Ren W, Yin Y, Liu G et al (2012a) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ren WK, Liu G, Li TJ et al (2012b) Dietary supplementation with arginine and glutamine confers a positive effect in porcine circovirus-infected pig. J Food Agric Environ 10:485–490Google Scholar
  40. Ren W, Li Y, Yu X et al (2013a) Glutamine modifies immune responses of mice infected with porcine circovirus type 2. Br J Nutr 110:1053–1060PubMedCrossRefGoogle Scholar
  41. Ren W, Luo W, Wu M et al (2013b) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45:479–488PubMedCrossRefGoogle Scholar
  42. Ren WK, Yin J, Zhu XP et al (2013c) Glutamine on intestinal inflammation: a mechanistic perspective. Eur J Inflamm 11:315–326Google Scholar
  43. Ren WK, Liu SP, Chen S et al (2013d) Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 45:947–955PubMedCrossRefGoogle Scholar
  44. Ren WK, Zou LX, Ruan Z et al (2013e) Dietary l-proline supplementation confers immuno-stimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids 45:555–561PubMedCrossRefGoogle Scholar
  45. Ren W, Yin J, Wu M et al (2014a) Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS One 9(2):e88335PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ren W, Chen S, Yin J et al (2014b) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995PubMedCrossRefGoogle Scholar
  47. Rezaei R, Wang WW, Wu ZL et al (2013a) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7CrossRefGoogle Scholar
  48. Rezaei R, Knabe DA, Tekwe CD et al (2013b) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923PubMedCrossRefGoogle Scholar
  49. Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122CrossRefGoogle Scholar
  50. Rist VTS, Eklund M, Bauer E et al (2012) Effect of feeding level on the composition of the intestinal microbiota in weaned piglets. J Anim Sci 90:19–21PubMedCrossRefGoogle Scholar
  51. Rosenstiel P (2013) Stories of love and hate: innate immunity and host-microbe crosstalk in the intestine. Curr Opin Gastroenterol 29:125–132PubMedCrossRefGoogle Scholar
  52. Ruth MR, Field CJ (2013) The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 4:27PubMedCrossRefPubMedCentralGoogle Scholar
  53. Schirbel A, Kessler S, Rieder F et al (2013) Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144:613–623PubMedCrossRefPubMedCentralGoogle Scholar
  54. Senftleben U, Karin M (2002) The IKK/NF-kappaB pathway. Crit Care Med 30:S18–S26CrossRefGoogle Scholar
  55. Wang J, Chen L, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032PubMedCrossRefGoogle Scholar
  56. Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035PubMedCrossRefPubMedCentralGoogle Scholar
  57. Wu G (2009) Amino acids: metabolism, functions and nutrition. Amino Acids 37:1–17PubMedCrossRefGoogle Scholar
  58. Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca RatonCrossRefGoogle Scholar
  59. Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411PubMedCrossRefGoogle Scholar
  60. Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34PubMedCrossRefPubMedCentralGoogle Scholar
  61. Wu G, Bazer FW, Johnson GA et al (2011) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030PubMedCrossRefGoogle Scholar
  62. Wu D, Lee YC, Liu HC, Yuan RY, Chiou HY, Hung CH, Hu CJ (2013a) Identification of TLR downstream pathways in stroke patients. Clin Biochem 46(12):1058–1064Google Scholar
  63. Wu G, Wu ZL, Dai ZL et al (2013b) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113PubMedCrossRefGoogle Scholar
  64. Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417CrossRefGoogle Scholar
  65. Zanello G, Berri M, Dupont J et al (2011) Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One 6(4):e18573PubMedCrossRefPubMedCentralGoogle Scholar
  66. Zhang J, Yin YL, Shu XG et al (2013a) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177PubMedCrossRefGoogle Scholar
  67. Zhang SH, Qiao SY, Ren M et al (2013b) Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191–1205PubMedCrossRefGoogle Scholar
  68. Zhong X, Li W, Huang X et al (2012) Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Arch Anim Nutr 66:347–356PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Wenkai Ren
    • 1
  • Jielin Duan
    • 1
  • Jie Yin
    • 1
  • Gang Liu
    • 1
    • 2
  • Zhong Cao
    • 2
  • Xia Xiong
    • 1
    Email author
  • Shuai Chen
    • 1
  • Tiejun Li
    • 1
  • Yulong Yin
    • 1
    • 3
  • Yongqing Hou
    • 3
  • Guoyao Wu
    • 3
    • 4
  1. 1.Key Laboratory of Agro-ecological Processes in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Institute of Subtropical AgricultureThe Chinese Academy of SciencesChangshaChina
  2. 2.Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaChina
  3. 3.Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed SafetyWuhan Polytechnic UniversityWuhanChina
  4. 4.Department of Animal ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations