Advertisement

Amino Acids

, Volume 46, Issue 9, pp 2241–2257 | Cite as

Determination and stereochemistry of proteinogenic and non-proteinogenic amino acids in Saudi Arabian date fruits

  • Hatem Salama Mohamed Ali
  • Omar Amin Alhaj
  • Abdulrahman Saleh Al-Khalifa
  • Hans Brückner
Original Article

Abstract

Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC–MS of total hydrolysates using the chiral stationary phases Chirasil®-L-Val and Lipodex® E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4–4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3–2.6 g/kg DM), γ-amino-n-butyric acid (0.5–1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130–230 mg/kg DM), l-pipecolic acid (40–140 mg/kg DM), and 2-aminoethanol (40–160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of l-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) l-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography–mass spectrometry revealed the presence of very low amounts of d-Ala, d-Asp, d-Glu, d-Ser and d-Phe (1.2–0.4 %, relative to the corresponding l-enantiomers), besides traces (0.2–1 %) of other d-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.

Keywords

Phoenix dactylifera (2S,5R)-5-hydroxypipecolic acid 1-aminocyclopropane-1-carboxylic acid Non-coded amino acids d-amino acids Plant amino acids Ion-exchange chromatography GC–MS Nutritional relevance 

Abbreviations

GC–MS

Gas chromatography mass spectrometry

M

Molecular mass (weight)

HPLC or LC

High performance liquid chromatography

SIM

Selected ion monitoring

AQC

6-Aminoquinoyl-carbamyl-N-hydroxysuccinimidyl carbamate

AMQ

6-Aminoquinoline

iTRAQ™

Isobaric tag for relative and absolute quantitation

MSTFA

N-methyl-N-trimethylsilyl-trifluoroacetamide

DCl/D2O

Deuterium chloride in deuterium oxide

TFAA

Trifluoroacetic acid anhydride

TFA

Trifluoroacetyl

Me

Methyl

Et

Ethyl

Chirasil®-L-Val

Dimethylpolysiloxane functionalized with l-Val-tert.butylamide

Lipodex® E

(3-Butyl-2,6-pentyl)-γ-cyclodextrine

Common proteinogenic amino acids (AAs) are abbreviated according to three-letter code and are of the l-configuration; non-proteinogenic amino acids are abbreviated as follows:

α-aminoadipic acid

α-Aaa or a-AAA

β-Ala or b-Ala

β-Alanine

Aba or a-AB

α-Amino-n-butyric acid

β-Aba or β-Aib

β-Aminoisobutyric acid

Acc

1-Aminocyclopropane-1-carboxylic acid

Cit

Citrulline

Cys

Cystine

Eta

Ethanolamine

GABA

γ-Amino-n-butyric acid

Hyl or Hy-Lys

5-Hydroxylysine

Hyp

(2S,4R)-4-hydroxyproline (trans-4-hydroxy-l-proline)

Nle

Norleucine (internal standard)

Orn

Ornithine

Pip

Pipecolic acid

Pip(OH)

(2S,5R)-5-hydroxypipecolic acid (trans-5-hydroxypipecolic acid)

Amino compounds being part of reference standards but not detected in hydrolysates:

Carn

Carnosine

Csystat

Cystathionine

1-M-His

1-Methylhistidine

3-M-His

3-Methylhistidine

P-Ser

O-Phosporyl-l-serine

P-Eta

Phosphoethanolamine

Sar

Sarcosine

Tau

Taurine

Notes

Acknowledgments

This project was supported by NSTIP strategic technologies program number 11-AGR 1600-2 of the Kingdom of Saudi Arabia. HB acknowledges his position as a Visiting Professor and Scientific Consultant at KSU. Special thanks are addressed to Katja Dettmer, University of Regensburg, and Małgorzata Jaworska, National Medicines Institute, Warsaw, Jürgen Gerhardt, C.A.T. Tübingen, and Frank Gutjahr, Chromatographie Balingen, for valuable discussions and assistance in parts of the work, in particular disproving or confirming the presence of tentatively assigned amino compounds in selected date samples.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6PubMedCrossRefGoogle Scholar
  2. Al-Aswad MB (1971) The amino acid content of some Iraqi dates. J Food Sci 36:1019–1020CrossRefGoogle Scholar
  3. Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F (2005) Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7586–7591PubMedCrossRefGoogle Scholar
  4. Al-Hooti S, Sidhu JS, Qabazard H (1997) Physicochemical characteristics of five date fruit cultivars grown in the United Arab Emirates. Plant Food Hum Nutr 50:101–113CrossRefGoogle Scholar
  5. Ali H, Pätzold R, Brückner H (2006) Determination of l- and d-amino acids in smokeless tobacco products and tobacco. Food Chem 99:803–812CrossRefGoogle Scholar
  6. Ali HSM, Pätzold R, Brückner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38:951–958PubMedCrossRefGoogle Scholar
  7. Al-Rawi N, Markakis P, Bauer DH (1967) Amino acid composition of Iraqi dates. J Sci Food Agric 18:1–2PubMedCrossRefGoogle Scholar
  8. Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the future? Int J Food Sci Nutr 54:247–259PubMedCrossRefGoogle Scholar
  9. AOAD (2012) Arab agricultural statistics yearbook, vol 32, table 72 (dates), Arab Organization for Agricultural Development (AOAD), Khartoum, p 111Google Scholar
  10. Asen S, Thompson JF, Morris CJ, Irreverre F (1959) Isolation of β-aminoisobutyric acid from bulbs of Iris tingitana var. Wedgewood. J Biol Chem 234:343–346Google Scholar
  11. Auda H, Al-Wandawi H, Al-Adhami L (1976) Protein and amino acid composition of three varieties of Iraqi dates at different stages of development. J Agric Food Chem 24:365–367PubMedCrossRefGoogle Scholar
  12. Bell EA (2003) Review. Nonprotein amino acids in plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51:2854–2865PubMedCrossRefGoogle Scholar
  13. Bergmann H, Machelett B, Leinhos V (1994) Effect of natural amino alcohols on the yield of essential amino acids and the amino acid pattern in stressed barley. Amino Acids 7:327–331PubMedCrossRefGoogle Scholar
  14. Booij I, Piombo G, Risterucci JM, Thomas D, Ferry M (1993) Sugars and free amino acid compositions of five cultivars of dates from offshoots or vitroplants in open fields. J Agric Food Chem 41:1553–1557CrossRefGoogle Scholar
  15. Bouaziz MA, Besbes S, Blecker C, Wathelet B, Deroanne C, Attia H (2008) Protein and amino acid profiles of Tunesian Deglet Nour and Allig date palm fruit seeds. Fruits 63:37–43CrossRefGoogle Scholar
  16. Bouché N, Fromm H (2004) GABA in plans: just a metabolite? Trends Plant Sci 9:110–115PubMedCrossRefGoogle Scholar
  17. Brenner SA, Romeo JT (1986) Fungitoxic effects of nonprotein imino acids on growth of saprophytic fungi isolated from the leaf surface of Calliandra haematocephala. Appl Environ Microbiol 51:690–693PubMedCentralPubMedGoogle Scholar
  18. Brückner H, Fujii N (eds) (2011) d-Amino acids in chemistry, life sciences, and biotechnology. Verlag Helvetica Chimica Acta, Zürich, and Wiley-VCH, WeinheimGoogle Scholar
  19. Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55PubMedCrossRefGoogle Scholar
  20. Burroughs LF (1957) 1-Aminocylcopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples. Nature 179:360–361PubMedCrossRefGoogle Scholar
  21. Cherkofsky ISC (1995) 1-Aminocyclopropanecarboxlic acid: mouse to man interspecies pharmacokinetic comparison and allometric relationships. J Pharm Sci 84:1231–1235PubMedCrossRefGoogle Scholar
  22. D’Aniello G, Grieco N, Di Filippo MA, Cappiello F, Topo E, D’Aniello E, Ronsini S (2007) Reproductive implication of d-aspartic acid in human pre-ovulatory follicular fluid. Hum Reprod 22:3178–3183PubMedCrossRefGoogle Scholar
  23. Dardenne G, Sørensen JCH (1974) γ-l-Glutamyl-l-pipecolic acid in Gleditsia caspica. Phytochemistry 13:1515–1517CrossRefGoogle Scholar
  24. del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, Benatti FB, Harris RC, Wise JA, Leite CC, Pereira RM, de Sá-Pinto AL, Lancha-Junior AH, Gualano B (2011) Beta-alanine (CarnosynTM) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity. Amino Acids 43:49–56PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dettmer K, Nürnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399:1127–1139PubMedCrossRefGoogle Scholar
  26. El-Sohaimy SA, Hafez EE (2010) Biochemical and nutritional characterization of date palm fruits (Phoenix dactylifera L.). J Appl Sci Res 6:1060–1067Google Scholar
  27. Fayadh JM, Al-Showiman SS (1990) Chemical composition of date palm (Phoenix dactylifera L.). J Chem Soc Pak 12:84–103Google Scholar
  28. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176PubMedCrossRefGoogle Scholar
  29. Frank H, Woiwode W, Nicholson GJ, Bayer E (1979) Determination of optical purity of amino acids in proteins. In: Kein E, Kein PP (eds) Stable isotopes. Academic Press, New York, pp 165–172Google Scholar
  30. Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42:1553–1582PubMedCrossRefGoogle Scholar
  31. Fujioka S, Sakurai A (1997) Conversion of lysine to l-pipecolic acid induces flowering in Lemna paucicostata 151. Plant Cell Physiol 38:1278–1280Google Scholar
  32. Gartler S, Dobzhansky T (1954) Excretion in human urine of an unknown amino-acid derived from dates. Nature 174:553CrossRefGoogle Scholar
  33. Gerhardt J, Nicholson GJ (1994) Unambiguous determination of the optical purity of peptides via GC-MS. In: Hodges RS, Smith JA (eds) Peptides: chemistry, structure and biology. Escom Science Publisher, Leiden, pp 241–243CrossRefGoogle Scholar
  34. Gerhardt J, Nicholson GJ (2001) Validation of a GC-MS method for determination of the optical purity of peptides. In: Martinez J, Fehrentz J-A (eds) Peptides 2000. Editions EDK, Paris, pp 563–564Google Scholar
  35. Grobbelaar N, Pollard JK, Steward FC (1955) New soluble nitrogen compounds (amino- and imino-acids and amides) in plants. Nature 175:703–708CrossRefGoogle Scholar
  36. Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozoticin-induced diabetic rates. Biosci Biotechnol Biochem 68:444–447PubMedCrossRefGoogle Scholar
  37. Iezhitsa IN, Spasov AA, Zhuravleva NV, Sinolitskii MK, Voronin SP (2004) Comparative study of the efficacy of potassium magnesium l-, d-, and dl-aspartate stereoisomers in overcoming digoxin-and furosemide-induced potassium and magnesium depletions. Magnes Res 17:276–292PubMedGoogle Scholar
  38. Inanobe A, Furukawa H, Gouaux E (2005) Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47:71–84PubMedCrossRefGoogle Scholar
  39. Ishurd O, Zahid M, Xiao P, Pan Y (2004) Protein and amino acids content of Libyan dates at three stages of development. J Sci Food Agric 84:481–484CrossRefGoogle Scholar
  40. Jaworska M, Stańczyk M, Wilk M, Kłaczkow G, Anuszewska E, Barzał J, Rzepecki P (2012) New approach for amino acid profiling in human plasma by selective fluorescence derivatization. Amino Acids 43:1653–1661PubMedCrossRefGoogle Scholar
  41. Kaspar H, Dettmer K, Chan Q, Daniels S, Nimkar S, Daviglus ML, Stamler J, Elliott P, Oefner PJ (2009) Urinary amino acid analysis: A comparison of iTRAQ®-LC-MS/MS, GC-MS, and amino acid analyzer. J Chromatogr B 877:1838–1846CrossRefGoogle Scholar
  42. Kieliszewski M, Lamport DTA (1994) Extensin repetitive motifs, functional sites, post-translational code, and phylogeny. Plant J 5:157–172PubMedCrossRefGoogle Scholar
  43. Kim J-S, Lee Y-S (2009) Enolization and racemization reaction of glucose and fructose on heating with amino-acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. Amino Acids 36:465–474PubMedCrossRefGoogle Scholar
  44. Kite GC, Ireland H (2002) Non-protein amino acids of Bocoa (Leguminosae; Papilionoideae). Phytochemistry 59:163–168PubMedCrossRefGoogle Scholar
  45. Kiyoto M, Saito S, Hattori K, Cho N-S, Hara T, Yagi Y, Aoyama M (2008) Inhibitory effects of l-pipecolic acid from the edible mushroom, Sarcodon aspratus, on angiotensin I-converting enzyme. J Wood Sci 54:179–181CrossRefGoogle Scholar
  46. König WA, Krebber R, Mischnick P (1989) Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part V: Octakis (3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. J High Res Chromatogr 12(35):732–738CrossRefGoogle Scholar
  47. Liardon R, Ledermann S, Ott U (1981) Determination of d-amino acids by deuterium labelling and selected ion monitoring. J Chromatogr 203:385–395CrossRefGoogle Scholar
  48. Lindstedt S, Lindstedt G (1959) On the formation of 5-hydroxypipepcolic acid from 4-hydroxy-dl-lysine. Arch Biochem Biophys 85:565–566PubMedCrossRefGoogle Scholar
  49. Mester L, Szabados L, Mester M, Yadavi N (1979) Identification par RMN13C dans les feuilles de Xylia xylocarpa de l’acide trans-5-hydroxypipecolique, nouvel inhibiteur de l’agrégation plaquettaire par la serotonine. Planta Med 35:339–341PubMedCrossRefGoogle Scholar
  50. Nagata Y, Homma H, Lee JA, Imai K (1999) d-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 444:160–164PubMedCrossRefGoogle Scholar
  51. Nahum-Levy R, Fossum LH, Skolnick P, Benveniste M (1999) Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-d-aspartate receptors. Mol Pharmacol 56:1207–1218PubMedGoogle Scholar
  52. Pätzold R, Brückner H (2006) Gas chromatographic determination and mechanism of formation of d-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31:63–72PubMedCrossRefGoogle Scholar
  53. Peiser G, Yang SF (1998) Evidence for 1-(malonylamino)cyclopropane-1-carboxylic acid being the major conjugate of aminocyclopropane-1-carboxylic acid in tomato fruit. Plant Physiol 116:1527–1532PubMedCentralPubMedCrossRefGoogle Scholar
  54. Piez KA, Irreverre F, Wolf HL (1956) The separation and determination of cyclic imino acids. J Biol Chem 223:687–697PubMedGoogle Scholar
  55. Powers ME, Yarrow JF, McCoy SC, Borst SE (2008) Growth hormone isoform responses to GABA ingestion at rest and after exercise. Med Sci Sports Exerc 40:104–110PubMedCrossRefGoogle Scholar
  56. Przegaliński E, Tatarczyńska E, Dereń-Wesołek A, Chojnacka-Wojcik E (1997) Antidepressant—like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36:31–37PubMedCrossRefGoogle Scholar
  57. Rathinasabapathi B (2002) Propionate, a source of ß-alanine, is an inhibitor of ß-alanine methylation in Limonium latifolium, Plumbaginaceae. J Plant Physiol 159:671–674CrossRefGoogle Scholar
  58. Rinderknecht H (1959) The free amino acid pattern of dates in relation to their darkening during maturation and storage. J Food Sci 24:298–304CrossRefGoogle Scholar
  59. Russell AL, McCarty MF (2000) dl-phenylalanine markedly potentiates opiate analgesia—an example of nutrient/pharmaceutical up-regulation of the endogenous analgesia system. Med Hypotheses 55:283–288PubMedCrossRefGoogle Scholar
  60. Sasaki H, Kume H, Nemoto A, Narisawa S, Takahashi N (1997) Ethanolamine modulates the rate of rat hepatocyte proliferation in vitro and in vivo. Proc Natl Acad Sci USA 94:7320–7325PubMedCentralPubMedCrossRefGoogle Scholar
  61. Sasamura T, Matsuda A, Kokuba Y (1998) Tumor growth inhibition and nutritional effect of D-amino acid solution in AH109A hepatoma-bearing rats. J Nutr Sci Vitaminol (Tokyo) 44:79–87CrossRefGoogle Scholar
  62. Spackman DH, Stein WH, Moore S (1958) Automated recording apparatus for use in chromatography of amino acids. Anal Chem 30:190–1206CrossRefGoogle Scholar
  63. Topo E, Soricelli A, D’Aniello A, Ronsini S, D’Aniello G (2009) The role and molecular mechanisms of d-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7:120. doi: 10.1186/1477-7827-7-120 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Topo E, Soricelli A, DI Maio A, D’Aniello E, DI Fore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rats. Amino Acids 38:1561–1569PubMedCrossRefGoogle Scholar
  65. Tsai GE, Yang P, Chang Y-C, Chong M-Y (2006) d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59:230–234PubMedCrossRefGoogle Scholar
  66. Vähätalo M-L, Virtanen AI (1957) A new cyclic α-aminocarboxylic acid in berries of cowberry. Acta Chem Scand 11:741–756CrossRefGoogle Scholar
  67. Vance JE (2008) Thematic review series: glycerolipids. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49:1377–1387PubMedCrossRefGoogle Scholar
  68. Vranova V, Loijkova L, Rejsek K, Formanek P (2013) Significance of the natural occurrence of l- versus d-pipecolic acid: a review. Chirality 25:823–831PubMedCrossRefGoogle Scholar
  69. Witkop P, Foltz CM (1956) The configuration of 5-hydroxypipecolic acid from dates. J Am Chem Soc 79:192–197CrossRefGoogle Scholar
  70. Wolosker H, D’Aniello A, Snyder SH (2000) D-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Hatem Salama Mohamed Ali
    • 1
  • Omar Amin Alhaj
    • 1
  • Abdulrahman Saleh Al-Khalifa
    • 1
  • Hans Brückner
    • 2
    • 3
  1. 1.Department of Food Science and Nutrition, College of Food Science and AgricultureKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Food Sciences, Research Center for BioSystems Land Use and Nutrition (IFZ), Institute of Nutritional ScienceJustus-Liebig-University of GiessenGiessenGermany
  3. 3.King Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations