Advertisement

Amino Acids

, Volume 46, Issue 8, pp 1853–1866 | Cite as

Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques

  • Maruti J. Dhanavade
  • Kailas D. SonawaneEmail author
Original Article

Abstract

Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer’s disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2–Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer’s disease.

Keywords

Alzheimer’s disease Amyloid beta (Aβ) Aminopeptidases (APNs) Molecular docking and MD simulations 

Abbreviations

AD

Alzheimer’s disease

Aβ peptide

Amyloid beta peptide

SGAK

Aminopeptidase from Streptomyces griseus strain KK565

MD

Molecular dynamics

RMSD

Root mean square deviation

Notes

Acknowledgments

MJD is thankful to Department of Science and Technology, New Delhi for providing fellowship as research assistance under the scheme DST-PURSE. KDS is thankful to the Department of Biotechnology, New Delhi for financial support under the scheme DBT-IPLS sanctioned to Shivaji University, Kolhapur. Authors are thankful to Computer Centre, Shivaji University, Kolhapur for providing the computational facility.

Conflict of interest

All authors have no conflict of interest.

Supplementary material

726_2014_1740_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1117 kb)

References

  1. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N (2004) Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ 11:217–230PubMedCrossRefGoogle Scholar
  2. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672PubMedCrossRefGoogle Scholar
  3. Barage SH, Sonawane KD (2013) Exploring mode of phosphoramidon and Aβ peptide binding to hECE-1 by molecular dynamics and docking studies. Protein Pept Lett 21:140–152CrossRefGoogle Scholar
  4. Barage SH, Jalkute CB, Dhanavade MJ, Sonawane KD (2014) Simulated interactions between endothelin converting enzyme and Aβ peptide: insights into subsite recognition and cleavage mechanism. Int J Pept Res Ther. doi: 10.1007/s10989-014-9403-2 Google Scholar
  5. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brunden KR, Ballatore C, Crowe A, Smith AB 3rd, Lee VM, Trojanowski JQ (2010) Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol 223:304–310PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen G, Edwards T, D’souza V, Holz RC (1997) Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis. Biochemistry 36:4278–4286PubMedCrossRefGoogle Scholar
  8. Chevrier B, D’Orchymont H, Schalk C, Tarnus C, Moras D (1996) The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Eur J Biochem 237:393–398PubMedCrossRefGoogle Scholar
  9. Christianson DW, Alexander RS (1989) Carboxylate–histidine–zinc interactions in protein structure and function. J Am Chem Soc 111:6412–6419CrossRefGoogle Scholar
  10. Combet C, Jambon M, Deléage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214PubMedCrossRefGoogle Scholar
  11. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D (2002) Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment similarity with a virus fusion domain. Eur J Biochem 269(22):5642–5648PubMedCrossRefGoogle Scholar
  12. Dhanavade MJ, Jalkute CB, Barage SH, Sonawane KD (2013) Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Comput Biol Med 43:2063–2070PubMedCrossRefGoogle Scholar
  13. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404PubMedCrossRefGoogle Scholar
  14. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  15. Fede GD et al (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 13(323 (5920)):1473–1477CrossRefGoogle Scholar
  16. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037PubMedCentralPubMedCrossRefGoogle Scholar
  17. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684PubMedGoogle Scholar
  18. Gilboa R, Greenblatt HM, Perach M, Spungin-Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, Shohama G (2000) Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 Å resolution. Acta Cryst D56:551–558Google Scholar
  19. Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344PubMedCrossRefGoogle Scholar
  20. Haass C, Selkoe DF (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112PubMedCrossRefGoogle Scholar
  21. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  22. Hui KS (2007) Neuropeptidases. In: Lajtha A, Banik NL (eds) Handbook of neurochemistry and molecular neurobiology: neural protein metabolism and function, vol 7, 3rd edn. Springer, New York, USAGoogle Scholar
  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  24. Irwin JJ, Raushel FM, Shoichet BK (2005) Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 44:12316–12328PubMedCrossRefGoogle Scholar
  25. Iwatsubo T, Saido TC, Mann DM, Lee VMY, Trojanowski JQ (1996) Full-length amyloid-β (1–42(43)) and amino-terminally modified and truncated amyloid β42(43) deposit in diffuse plaques. Am J Pathol 149:1823–1830PubMedCentralPubMedGoogle Scholar
  26. Jalkute CB, Barage SH, Dhanavade MJ, Sonawane KD (2013) Molecular dynamics simulation and molecular docking studies of angiotensin converting enzyme with inhibitor lisinopril and amyloid beta peptide. Protein J 32:356–364PubMedCrossRefGoogle Scholar
  27. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  28. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487CrossRefGoogle Scholar
  29. Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS et al (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51:549–560PubMedCrossRefGoogle Scholar
  30. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 60:2256–2268PubMedCrossRefGoogle Scholar
  31. Laskowaski RA, McArther MW, Moss DS, Thornton JM (1993) PROCHECK a program to check sterio-chemical quality of a protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  32. Lendeckel U, Arndt M, Frank K, Spiess A, Reinhold D, Ansorge S (2000) Modulation of WNT-5A expression by actinonin: linkage of APN to the WNT-pathway? Adv Exp Med Biol 477:35–41PubMedCrossRefGoogle Scholar
  33. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78:1950–1958PubMedCentralPubMedGoogle Scholar
  34. Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2002) Structure validation by C alpha geometry: phi, psi and C beta deviation. Proteins 50:437–450CrossRefGoogle Scholar
  35. Miller CG, Green L (1983) Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. J Bacteriol 153:350–356PubMedCentralPubMedGoogle Scholar
  36. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791PubMedCentralPubMedCrossRefGoogle Scholar
  37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar
  38. Reeve CA, Bockman AT, Matin A (1984) Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J Bacteriol 157:758–763PubMedCentralPubMedGoogle Scholar
  39. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277PubMedCrossRefGoogle Scholar
  40. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815PubMedCrossRefGoogle Scholar
  41. Sarah MS, Yungui Z, Hideaki A, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L, Lennart M, Gan Li (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 51:703–714CrossRefGoogle Scholar
  42. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20(9):374PubMedCrossRefGoogle Scholar
  43. Schurer G, Lanig H, Clark T (2004) Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a quantum mechanical/molecular mechanical approach. Biochemistry 43:5414–5427PubMedCrossRefGoogle Scholar
  44. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCentralPubMedCrossRefGoogle Scholar
  45. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498PubMedCrossRefGoogle Scholar
  46. Selkoe DF (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061PubMedCrossRefGoogle Scholar
  47. Selkoe DF, Wolfe M (2007) Presenilin: running with scissors in the membrane. Cell 131:215–221PubMedCrossRefGoogle Scholar
  48. Sengupta S, Horowitz PM, Karsten SL, Jackson GR, Geschwind DH, Fu Y, Berry RW, Binder LI (2006) Degradation of tau protein by puromycin-sensitive aminopeptidase in vitro. Biochemistry 45:15111–15119PubMedCrossRefGoogle Scholar
  49. Sevalle J, Amoyel A, Rrobert P, Fournie-Zaluski MC, Roques B, Checler F (2009) Aminopeptidase A contributes to N-terminal truncation of amyloid β-peptide. J Neurochem 109:248–256PubMedCrossRefGoogle Scholar
  50. Spoel VD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  51. Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G (2001) Inhibition or the aminopeptidase from Aeromonas proteolytica by l-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 40:7035–7046PubMedCrossRefGoogle Scholar
  52. Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, Frank RW, Rosch P (1995) Structure of amyloid A4-(1–40)-peptide of Alzheimer’s disease. Eur J Biochem 233:293–298PubMedCrossRefGoogle Scholar
  53. Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson MW, Hersh LB, Kalbacher H, Stevanovic S, Rammensee HG, Schild H (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1:413–418PubMedCrossRefGoogle Scholar
  54. Takeda A, Araki W, Akiyama H, Tabira T (2004) Amino-truncated amyloid b-peptide (Ab5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer’s disease brain. FASEB J 18:1755–1757PubMedGoogle Scholar
  55. Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s A beta peptide: the many roads to perdition. Neuron 43:605–608PubMedGoogle Scholar
  56. Taylor A (1993a) Aminopeptidases: structure and function. FASEB J 7:290–298PubMedGoogle Scholar
  57. Taylor A (1993b) Aminopeptidases: towards a mechanism of action. Trends Biochem Sci 18:167–171PubMedGoogle Scholar
  58. Tekirian TL, Saido TC, Markesbery WR, Russell MJ, Wekstein DR, Patel E, Geddes JW (1998) N-terminal heterogeneity of parenchymal and cerebrovascular A beta deposit. J Neuropathol Exp Neurol 57:76–94PubMedCrossRefGoogle Scholar
  59. Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of A beta. J Neuropathol Exp Neurol 58:210–216PubMedCrossRefGoogle Scholar
  60. Tseng G, Sonawane KD, Korolkova YV, Zhang M, Liu J, Grishin EV, Guy RH (2007) Probing the outer mouth structure of the HERG channel with peptide toxin footprinting and molecular modeling. Biophys J 92:3524–3540PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410PubMedCentralPubMedCrossRefGoogle Scholar
  62. Xin H, William HS (2003) Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. J Mol Graph Model 22:115–126CrossRefGoogle Scholar
  63. Yao T, Cohen RE (1999) Giant proteases: beyond the proteasome. Curr Biol 9:R551–R553PubMedCrossRefGoogle Scholar
  64. Yoo C, Ahn K, Park JE, Kim MJ, Jo SA (2010) An aminopeptidase from Streptomyces sp. KK565 degrades beta amyloid monomers, oligomers and fibrils. FEBS Lett 584:4157–4162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Structural Bioinformatics Unit, Department of BiochemistryShivaji UniversityKolhapurIndia
  2. 2.Department of MicrobiologyShivaji UniversityKolhapurIndia

Personalised recommendations