Skip to main content
Log in

Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Pentatricopeptide repeat domain protein 1 (PTCD1) is a novel human protein that was recently shown to decrease the levels of mitochondrial leucine tRNAs. The physiological role of this regulation, however, remains unclear. Here we show that amino acid starvation by leucine deprivation significantly increased the mRNA steady-state levels of PTCD1 in human hepatocarcinoma (HepG2) cells. Amino acid starvation also increased the mitochondrially encoded leucine tRNA (tRNALeu(CUN)) and the mRNA for the mitochondrial leucyl-tRNA synthetase (LARS2). Despite increased PTCD1 mRNA steady-state levels, amino acid starvation decreased PTCD1 on the protein level. Decreasing PTCD1 protein concentration increases the stability of the mitochondrial leucine tRNAs, tRNALeu(CUN) and tRNALeu(UUR) as could be shown by RNAi experiments against PTCD1. Therefore, it is likely that decreased PTCD1 protein contributes to the increased tRNALeu(CUN) levels in amino acid-starved cells. The stabilisation of the mitochondrial leucine tRNAs and the upregulation of the mitochondrial leucyl-tRNA synthetase LARS2 might play a role in adaptation of mitochondria to amino acid starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Averous J, Bruhat A, Jousse C, Carraro V, Thiel G et al (2004) Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279(7):5288–5297

    Article  CAS  PubMed  Google Scholar 

  • Brunner G, Neupert W (1968) Turnover of outer and inner membrane proteins of rat liver mitochondria. FEBS Lett 1(3):153–155

    Article  CAS  PubMed  Google Scholar 

  • Chaveroux C, Lambert-Langlais S, Cherasse Y, Averous J, Parry L et al (2010) Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie 92(7):736–745

    Article  CAS  PubMed  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35(Pt 6):1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Doering CB, Danner DJ (2000) Amino acid deprivation induces translation of branched-chain alpha-ketoacid dehydrogenase kinase. Am J Physiol Cell Physiol 279(5):C1587–C1594

    CAS  PubMed  Google Scholar 

  • Fafournoux P, Bruhat A, Jousse C (2000) Amino acid regulation of gene expression. Biochem J 351(Pt 1):1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Kobayashi R, Murakami T, Shimomura Y (2001) Regulation of branched-chain alpha-keto acid dehydrogenase kinase expression in rat liver. J Nutr 131(3):841S–845S

    CAS  PubMed  Google Scholar 

  • Jackson CB, Nuoffer JM, Hahn D, Prokisch H, Haberberger B, Gautschi M, Häberli A, Gallati S, Schaller A (2014) Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet 51(3):170–175. doi:10.1136/jmedgenet-2013-101932

    Google Scholar 

  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. PNAS 101(42):15070–15075

    Google Scholar 

  • Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M et al (2008) Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics 7(12):2419–2428

    Article  CAS  PubMed  Google Scholar 

  • Le Roy F, Silhol M, Salehzada T, Bisbal C (2007) Regulation of mitochondrial mRNA stability by RNase L is translation-dependent and controls IFNalpha-induced apoptosis. Cell Death Differ 14(8):1406–1413

    Article  PubMed  Google Scholar 

  • Lee JI, Dominy JE Jr, Sikalidis AK, Hirschberger LL, Wang W et al (2008) HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway. Physiol Genomics 33(2):218–229

    Article  CAS  PubMed  Google Scholar 

  • Leung-Pineda V, Pan Y, Chen H, Kilberg MS (2004) Induction of p21 and p27 expression by amino acid deprivation of HepG2 human hepatoma cells involves mRNA stabilization. Biochem J 379(Pt 1):79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I et al (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16(8):2089–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munakata K, Iwamoto K, Bundo M, Kato T (2005) Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57(5):525–532

    Article  CAS  PubMed  Google Scholar 

  • Paillusson A, Hirschi N, Vallan C, Azzalin CM, Muhlemann O (2005) A GFP-based reporter system to monitor nonsense-mediated mRNA decay. Nucleic Acids Res 33(6):e54

    Article  PubMed Central  PubMed  Google Scholar 

  • Park H, Davidson E, King MP (2008) Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA 14(11):2407–2416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rackham O, Davies SM, Shearwood AM, Hamilton KL, Whelan J et al (2009) Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucleic Acids Res 37(17):5859–5867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rackham O, Filipovska A (2012) The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim Biophys Acta 1819(9–10):1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108(25):10190–10195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez MI, Mercer TR, Davies SM, Shearwood AM, Nygard KK et al (2011) RNA processing in human mitochondria. Cell Cycle 10(17):2904–2916

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Hahn D, Jackson CB, Kern I, Chardot C et al (2011) Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome. BMC Neurol 11:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sikalidis AK, Lee JI, Stipanuk MH (2011) Gene expression and integrated stress response in HepG2/C3A cells cultured in amino acid deficient medium. Amino Acids 41(1):159–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277(27):24120–24127

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zemel MB (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 6:26

    Article  Google Scholar 

  • Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14(10):2095–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson DM, Parker R (2009) Stressing out over tRNA cleavage. Cell 138(2):215–219

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185(1):35–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasukawa T, Hino N, Suzuki T, Watanabe K, Ueda T et al (2000) A pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile). Nucleic Acids Res 28(19):3779–3784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Schild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schild, C., Hahn, D., Schaller, A. et al. Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation. Amino Acids 46, 1775–1783 (2014). https://doi.org/10.1007/s00726-014-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1730-2

Keywords

Navigation