Advertisement

Amino Acids

, Volume 46, Issue 6, pp 1547–1556 | Cite as

Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide

  • Guoquan Li
  • Yan Xing
  • Jing WangEmail author
  • Peter S. Conti
  • Kai ChenEmail author
Original Article

Abstract

In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.

Keywords

Molecular imaging probe NGR peptide Fluorescence imaging CD13 receptor Tumor vasculature 

Abbreviations

NIRF

Near-infrared fluorescence

PET

Positron emission tomography

SPECT

Single photon emission computed tomography

CT

Computed tomography

MRI

Magnetic resonance imaging

APN

Aminopeptidase N

NGR

Asparagine–glycine–arginine

HPLC

High-performance liquid chromatography

PBS

Phosphate-buffered saline

DBCO

Dibenzocyclooctyne

NHS

N-Hydroxysuccinimide

TFA

Trifluoroacetic acid

DMSO

Dimethyl sulfoxide

DAPI

4′,6-Diamidino-2-phenylindole

PFA

Paraformaldehyde

Pi

Postinjection

ROI

Region-of-interest

18F-FDG

18F-Fluorodeoxyglucose

PK

Pharmacokinetics

Notes

Acknowledgments

This work was supported by the USC Department of Radiology, the Major Program of National Natural Science Foundation of China (Grant No. 81230033), the National Basic Research and Development Program of China (Grant No. 2011CB707704), and the Major Research Instrumentation Program of National Natural Science Foundation of China (Grant No. 81227901).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science (New York, NY) 279(5349):377–380CrossRefGoogle Scholar
  2. Atreya R, Waldner MJ, Neurath MF (2010) Molecular imaging: interaction between basic and clinical science. Gastroenterol Clin North Am 39(4):911–922PubMedCrossRefGoogle Scholar
  3. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMedCrossRefGoogle Scholar
  4. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3):652–659PubMedCrossRefGoogle Scholar
  5. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395PubMedCrossRefGoogle Scholar
  6. Chen K, Chen X (2010) Design and development of molecular imaging probes. Curr Top Med Chem 10(12):1227–1236PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen K, Chen X (2011a) Integrin targeted delivery of chemotherapeutics. Theranostics 1:189–200PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen K, Chen X (2011b) Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol 38(1):70–86PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62(11):1005–1022PubMedCrossRefGoogle Scholar
  10. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 64(21):8009–8014PubMedCrossRefGoogle Scholar
  11. Chen K, Wang X, Lin W, Shen K-F, Yap LP, Hughes LD, Conti PS (2012a) Strain-promoted catalyst-free click chemistry for rapid construction of 64Cu-labeled PET imaging probes. ACS Med Chem Lett 3(12):1019–1023CrossRefGoogle Scholar
  12. Chen K, Yap LP, Park R, Hui X, Wu K, Fan D, Chen X, Conti PS (2012b) A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Amino Acids 42(4):1329–1337PubMedCrossRefGoogle Scholar
  13. Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 10(1):417–427PubMedCrossRefGoogle Scholar
  14. Debets MF, van Berkel SS, Schoffelen S, Rutjes FP, van Hest JC, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun (Camb) 46(1):97–99CrossRefGoogle Scholar
  15. Debets MF, van Berkel SS, Dommerholt J, Dirks AT, Rutjes FP, van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815PubMedCrossRefGoogle Scholar
  16. Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28(5 Suppl 16):94–104PubMedCrossRefGoogle Scholar
  17. Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci USA 109(5):1637–1642PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122(2):376–386PubMedCrossRefGoogle Scholar
  19. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 9(4):1503–1508Google Scholar
  20. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137PubMedCrossRefGoogle Scholar
  22. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, Ono M (2001) Angiogenesis factors. Intern Med 40(7):565–572PubMedCrossRefGoogle Scholar
  23. Luan Y, Xu W (2007) The structure and main functions of aminopeptidase N. Curr Med Chem 14(6):639–647PubMedCrossRefGoogle Scholar
  24. Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release Off J Control Release Soc 143(2):265–273CrossRefGoogle Scholar
  25. Nwe K, Brechbiel MW (2009) Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm 24(3):289–302PubMedCentralPubMedCrossRefGoogle Scholar
  26. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727PubMedGoogle Scholar
  27. Raymond SB, Skoch J, Hills ID, Nesterov EE, Swager TM, Bacskai BJ (2008) Smart optical probes for near-infrared fluorescence imaging of Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 35(Suppl 1):S93–S98PubMedCrossRefGoogle Scholar
  28. Sakatani K, Kashiwasake-Jibu M, Taka Y, Wang S, Zuo H, Yamamoto K, Shimizu K (1997) Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence. J Neurosurg 87(5):738–745PubMedCrossRefGoogle Scholar
  29. Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11(15):1175–1187PubMedCrossRefGoogle Scholar
  30. Teranishi J, Ishiguro H, Hoshino K, Noguchi K, Kubota Y, Uemura H (2008) Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells. Prostate 68(15):1666–1673PubMedCrossRefGoogle Scholar
  31. Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403PubMedCrossRefGoogle Scholar
  32. von Wallbrunn A, Waldeck J, Holtke C, Zuhlsdorf M, Mesters R, Heindel W, Schafers M, Bremer C (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Optics 13(1):011007CrossRefGoogle Scholar
  33. Wagner HN Jr (2008) Advancing a molecular theory of disease. J Nucl Med 49(8):15N–34NPubMedGoogle Scholar
  34. Wang RE, Niu Y, Wu H, Amin MN, Cai J (2011) Development of NGR peptide-based agents for tumor imaging. Am J Nucl Med Mol Imaging 1(1):36–46PubMedCentralPubMedGoogle Scholar
  35. Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171PubMedCrossRefGoogle Scholar
  36. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378PubMedCrossRefGoogle Scholar
  37. Wunderbaldinger P, Turetschek K, Bremer C (2003) Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol 13(9):2206–2211PubMedCrossRefGoogle Scholar
  38. Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3):290–306PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Nuclear MedicineXijing Hospital, The Fourth Military Medical UniversityXi’anChina
  2. 2.Molecular Imaging Center, Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations