Amino Acids

, Volume 46, Issue 6, pp 1459–1469 | Cite as

PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine

  • Yongchao Dou
  • Bo Yao
  • Chi Zhang
Original Article


Phosphorylation is one of the most essential post-translational modifications in eukaryotes. Studies on kinases and their substrates are important for understanding cellular signaling networks. Because of the cost in time and labor associated with large-scale wet-bench experiments, computational prediction of phosphorylation sites becomes important and many computational tools have been developed in the recent decades. The prediction tools can be grouped into two categories: kinase-specific and non-kinase-specific tools. With more kinases being discovered by the new sequencing technologies, accurate non-kinase-specific prediction tools are highly desirable for whole-genome annotation in a wider variety of species. In this manuscript, a support vector machine is used to combine eight different sequence level scoring functions to predict phosphorylation sites. The attributes used by this work, including Shannon entropy, relative entropy, predicted protein secondary structure, predicted protein disorder, solvent accessible area, overlapping properties, averaged cumulative hydrophobicity, and k-nearest neighbor, were able to obtain better results than the previously used attributes by other similar methods. This method achieved AUC values of 0.8405/0.8183/0.7383 for serine (S), threonine (T), and tyrosine (Y) phosphorylation sites, respectively, in animals with a tenfold cross-validation. The model trained by the animal phosphorylation sites was also applied to a plant phosphorylation site dataset as an independent test. The AUC values for the independent test dataset were 0.7761/0.6652/0.5958 for S/T/Y phosphorylation sites, which compared favorably with those of several existing methods. A web server based on our method was constructed for public use. The server, trained model, and all datasets used in the current study are available at


Phosphorylation site prediction Non-kinase-specific tool Support vector machine 



This project was supported by funding under CZ’s startup funds from University of Nebraska, Lincoln, NE. The manuscript was written through contributions of all authors. YD designed the study and implemented the algorithm. BY and CZ built the web servers. CZ supervised the whole project. All authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2014_1711_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)


  1. Ahmad S, Gromiha MM, Sarai A (2003) RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinformatics 19(14):1849–1851PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  3. Basu S, Plewczynski D (2010) AMS 3.0: prediction of post-translational modifications. BMC Bioinforma 11:210. doi: 10.1186/1471-2105-11-210 CrossRefGoogle Scholar
  4. Biswas AK, Noman N, Sikder AR (2010) Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinforma 11:273. doi: 10.1186/1471-2105-11-273 CrossRefGoogle Scholar
  5. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5(11):2203–2216. doi: 10.1002/pro.5560051107 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362. doi: 10.1006/jmbi1999.3310 PubMedCrossRefGoogle Scholar
  7. Bologna G, Yvon C, Duvaud S, Veuthey AL (2004) N-terminal myristoylation predictions by ensembles of neural networks. Proteomics 4(6):1626–1632. doi: 10.1002/pmic.200300783 PubMedCrossRefGoogle Scholar
  8. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G (2004) The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA 101(32):11707–11712. doi: 10.1073/pnas.0306880101 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23(15):1875–1882. doi: 10.1093/bioinformatics/btm270 PubMedCrossRefGoogle Scholar
  10. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13(2):211–222PubMedCrossRefGoogle Scholar
  11. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845PubMedCrossRefGoogle Scholar
  12. Diella F, Gould CM, Chica C, Via A, Gibson TJ (2008) Phospho.ELM: a database of phosphorylation sites—update 2008. Nucleic Acids Res 36(Database issue):D240–D244. doi: 10.1093/nar/gkm772 PubMedCentralPubMedGoogle Scholar
  13. Dou Y, Zheng X, Yang J, Wang J (2010) Prediction of catalytic residues based on an overlapping amino acid classification. Amino Acids 39(5):1353–1361. doi: 10.1007/s00726-010-0587-2 PubMedCrossRefGoogle Scholar
  14. Dou Y, Wang J, Yang J, Zhang C (2012) L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier. PLoS One 7(4):e35666. doi: 10.1371/journal.pone.0035666 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17(1):107–112. doi: 10.1093/protein/gzh013 PubMedCrossRefGoogle Scholar
  16. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38(Database issue):D828–D834. doi: 10.1093/nar/gkp810 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fan RE, Chen PH, Lin CJ (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6:1889–1918Google Scholar
  18. Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586–2600. doi: 10.1074/mcp.M110.001388 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gok M, Ozcerit AT (2012) Prediction of MHC class I binding peptides with a new feature encoding technique. Cell Immunol 275(1–2):1–4. doi: 10.1016/j.cellimm.2012.04.005 PubMedCrossRefGoogle Scholar
  20. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322Google Scholar
  21. Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinforma 9:500. doi: 10.1186/1471-2105-9-500 CrossRefGoogle Scholar
  22. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36(Database issue):D1015–D1021. doi: 10.1093/nar/gkm812 PubMedCentralPubMedGoogle Scholar
  23. Hjerrild M, Stensballe A, Rasmussen TE, Kofoed CB, Blom N, Sicheritz-Ponten T, Larsen MR, Brunak S, Jensen ON, Gammeltoft S (2004) Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry. J Proteome Res 3(3):426–433PubMedCrossRefGoogle Scholar
  24. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049. doi: 10.1093/nar/gkh253 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Johansson F, Toh H (2010) A comparative study of conservation and variation scores. BMC Bioinforma 11:388. doi: 10.1186/1471-2105-11-388 CrossRefGoogle Scholar
  26. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15(2):153–164. doi: 10.1093/glycob/cwh151 PubMedCrossRefGoogle Scholar
  27. Kim JH, Lee J, Oh B, Kimm K, Koh I (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20(17):3179–3184. doi: 10.1093/bioinformatics/bth382 PubMedCrossRefGoogle Scholar
  28. Kreegipuu A, Blom N, Brunak S, Jarv J (1998) Statistical analysis of protein kinase specificity determinants. FEBS Lett 430(1–2):45–50PubMedCrossRefGoogle Scholar
  29. Kreegipuu A, Blom N, Brunak S (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27(1):237–239PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L (2005) The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 38(5):404–415. doi: 10.1016/j.jbi.2005.02.008 PubMedCrossRefGoogle Scholar
  31. Li S, Li H, Li M, Shyr Y, Xie L, Li Y (2009) Improved prediction of lysine acetylation by support vector machines. Protein Pept Lett 16(8):977–983PubMedCrossRefGoogle Scholar
  32. Mackintosh RW, Davies SP, Clarke PR, Weekes J, Gillespie JG, Gibb BJ, Hardie DG (1992) Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem 209(3):923–931PubMedCrossRefGoogle Scholar
  33. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. doi: 10.1126/science.1075762 PubMedCrossRefGoogle Scholar
  34. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405PubMedCrossRefGoogle Scholar
  35. Mihalek I, Res I, Lichtarge O (2004) A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 336(5):1265–1282. doi: 10.1016/j.jmb.2003.12.078 PubMedCrossRefGoogle Scholar
  36. Shao J, Xu D, Tsai SN, Wang Y, Ngai SM (2009) Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS One 4(3):e4920. doi: 10.1371/journal.pone.0004920 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Swaminathan K, Adamczak R, Porollo A, Meller J (2010) Enhanced prediction of conformational flexibility and phosphorylation in proteins. Adv Exp Med Biol 680:307–319. doi: 10.1007/978-1-4419-5913-3_35 PubMedCrossRefGoogle Scholar
  38. Sweet RM, Eisenberg D (1983) Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. J Mol Biol 171(4):479–488PubMedCrossRefGoogle Scholar
  39. Taylor WR (1986) The classification of amino acid conservation. J Theor Biol 119(2):205–218PubMedCrossRefGoogle Scholar
  40. Trost B, Kusalik A (2011) Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27(21):2927–2935. doi: 10.1093/bioinformatics/btr525 PubMedCrossRefGoogle Scholar
  41. Vapnik VN (1998) Statistical learning theory. Adaptive and learning systems for signal processing, communications, and control. Wiley, New YorkGoogle Scholar
  42. Vapnik VN (2000) The nature of statistical learning theory. Statistics for engineering and information science, 2nd edn. Springer, New YorkGoogle Scholar
  43. Vergara IA, Norambuena T, Ferrada E, Slater AW, Melo F (2008) StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinforma 9:265. doi: 10.1186/1471-2105-9-265 CrossRefGoogle Scholar
  44. Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55(1):104–117. doi: 10.1111/j.1365-313X.2008.03488.x PubMedCrossRefGoogle Scholar
  45. Wang L, Brown SJ (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34(Web server issue):W243–W248. doi: 10.1093/nar/gkl298 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi: 10.1016/j.jmb.2004.02.002 PubMedCrossRefGoogle Scholar
  47. Wu TD, Brutlag DL (1995) Identification of protein motifs using conserved amino acid properties and partitioning techniques. Proc Int Conf Intell Syst Mol Biol 3:402–410PubMedGoogle Scholar
  48. Wu CY, Hwa YH, Chen YC, Lim C (2012) Hidden relationship between conserved residues and locally conserved phosphate-binding structures in NAD(P)-binding proteins. J Phys Chem B. doi: 10.1021/jp3014332 Google Scholar
  49. Xue Y, Li A, Wang L, Feng H, Yao X (2006) PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinforma 7:163. doi: 10.1186/1471-2105-7-163 CrossRefGoogle Scholar
  50. Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X, Ren J (2010) A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci 11(6):485–496PubMedCrossRefGoogle Scholar
  51. Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24(3):255–260. doi: 10.1093/protein/gzq094 PubMedCrossRefGoogle Scholar
  52. Zhang T, Zhang H, Chen K, Shen S, Ruan J, Kurgan L (2008) Accurate sequence-based prediction of catalytic residues. Bioinformatics 24(20):2329–2338. doi: 10.1093/bioinformatics/btn433 PubMedCrossRefGoogle Scholar
  53. Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases–searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41(Database issue):D1176–D1184. doi: 10.1093/nar/gks1081 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Center for Plant Science and InnovationSchool of Biological Sciences, University of NebraskaLincolnUSA

Personalised recommendations