Amino Acids

, Volume 46, Issue 6, pp 1441–1448 | Cite as

Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain

Review Article


Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.


Glutamate Chronic pain Metabotropic glutamate receptor 8 Antinociceptive descending pathway DHPG 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. al-Ghoul WM, Volsi GL, Weinberg RJ, Rustioni A (1993) Glutamate immunocytochemistry in the dorsal horn after injury or stimulation of the sciatic nerve of rats. Brain Res Bull 30:453–459PubMedCrossRefGoogle Scholar
  2. Ayala JE, Niswender CM, Luo Q, Banko JL, Conn PJ (2008) Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology 54:804–814PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bäckström P, Hyytiä P (2005) Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol 528:110–118PubMedCrossRefGoogle Scholar
  4. Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605PubMedCrossRefGoogle Scholar
  5. Catania MV, De Socarraz H, Penney JB, Young AB (1994) Metabotropic glutamate receptor heterogeneity in rat brain. Mol Pharmacol 45:626–636PubMedGoogle Scholar
  6. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237PubMedCrossRefGoogle Scholar
  7. Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci 10:3629–3641PubMedCrossRefGoogle Scholar
  8. Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26PubMedCrossRefGoogle Scholar
  9. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790PubMedCrossRefGoogle Scholar
  10. D’Antoni S, Berretta A, Bonaccorso CM, Bruno V, Aronica E, Nicoletti F, Catania MV (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443PubMedCrossRefGoogle Scholar
  11. de Novellis V, Mariani L, Palazzo E, Vita D, Marabese I, Scafuro M, Rossi F, Maione S (2005) Periaqueductal grey CB1 cannabinoid and metabotropic glutamate subtype 5 receptors modulate changes in rostral ventromedial medulla neuronal activities induced by subcutaneous formalin in the rat. Neuroscience 134:269–281PubMedCrossRefGoogle Scholar
  12. Dmitrieva N, Rodríguez-Malaver AJ, Pérez J, Hernández L (2004) Differential release of neurotransmitters from superficial and deep layers of the dorsal horn in response to acute noxious stimulation and inflammation of the rat paw. Eur J Pain 8:245–252PubMedCrossRefGoogle Scholar
  13. Duvoisin RM, Zhang C, Pfankuch TF, O’Connor H, Gayet-Primo J, Quraishi S, Raber J (2005) Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci 22:425–436PubMedCrossRefGoogle Scholar
  14. Duvoisin RM, Pfankuch T, Wilson JM, Grabell J, Chhajlani V, Brown DG, Johnson E, Raber J (2010a) Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behav Brain Res 212:168–173PubMedCentralPubMedCrossRefGoogle Scholar
  15. Duvoisin RM, Villasana L, Pfankuch T, Raber J (2010b) Sex-dependent cognitive phenotype of mice lacking mGluR8. Behav Brain Res 209:21–26PubMedCentralPubMedCrossRefGoogle Scholar
  16. Duvoisin RM, Villasana L, Davis MJ, Winder DG, Raber J (2011) Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges. Behav Brain Res 221:50–54PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fendt M, Bürki H, Imobersteg S, van der Putten H, McAllister K, Leslie JC, Shaw D, Hölscher C (2010) The effect of mGlu8 deficiency in animal models of psychiatric diseases. Genes Brain Behav 9:33–44PubMedCrossRefGoogle Scholar
  18. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504PubMedCrossRefGoogle Scholar
  19. Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536PubMedCrossRefGoogle Scholar
  20. Fields HL, Bry J, Hentall I, Zorman G (1983) The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 3:2545–2552PubMedGoogle Scholar
  21. Fields HL, Malick A, Burstein R (1995) Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J Neurophysiol 74:1742–1759PubMedGoogle Scholar
  22. Folbergrová J, Druga R, Haugvicová R, Mares P, Otáhal J (2008) Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 54:665–675PubMedCrossRefGoogle Scholar
  23. Gerlai R, Adams B, Fitch T, Chaney S, Baez M (2002) Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype. Neuropharmacology 43:235–249PubMedCrossRefGoogle Scholar
  24. Han JS, Bird GC, Neugebauer V (2004) Enhanced group III mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Neuropharmacology 46:918–926PubMedCrossRefGoogle Scholar
  25. Heinricher MM, Tortorici V (1994) Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63:533–546PubMedCrossRefGoogle Scholar
  26. Heinricher MM, Barbaro NM, Fields HL (1989) Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Mot Res 6:427–439PubMedCrossRefGoogle Scholar
  27. Hudson LJ, Bevan S, McNair K, Gentry C, Fox A, Kuhn R, Winter J (2002) Metabotropic glutamate receptor 5 upregulation in A-fibers after spinal nerve injury: 2-methyl-6-(phenylethynyl)-pyridine (MPEP) reverses the induced thermal hyperalgesia. J Neurosci 22:2660–2668PubMedGoogle Scholar
  28. Jiang FL, Tang YC, Chia SC, Jay TM, Tang FR (2007) Anticonvulsive effect of a selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine (S-3,4-DCPG) in the mouse pilocarpine model of status epilepticus. Epilepsia 48:783–792PubMedCrossRefGoogle Scholar
  29. Kinoshita A, Ohishi H, Neki A, Nomura S, Shigemoto R, Takada M, Nakanishi S, Mizuno N (1996) Presynaptic localization of a metabotropic glutamate receptor, mGluR8, in the rhinencephalic areas: a light and electron microscope study in the rat. Neurosci Lett 207:61–64PubMedCrossRefGoogle Scholar
  30. Koulen P, Kuhn R, Wässle H, Brandstätter JH (1999) Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proc Natl Acad Sci USA 96:9909–9914PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lee JJ, Jane DE, Croucher MJ (2003) Anticonvulsant dicarboxyphenylglycines differentially modulate excitatory amino acid release in the rat cerebral cortex. Brain Res 977:119–123PubMedCrossRefGoogle Scholar
  32. Leyva J, Maione S, Pallotta M, Berrino L, Rossi F (1995) Metabotropic and ionotropic glutamate receptors mediate opposite effects on periaqueductal gray matter. Eur J Pharmacol 285:123–126PubMedCrossRefGoogle Scholar
  33. Li W, Neugebauer V (2006) Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 96:1803–1815PubMedCrossRefGoogle Scholar
  34. Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, Yu JL, Köster A, Baez M, Schoepp DD (2002) Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 43:251–259PubMedCrossRefGoogle Scholar
  35. Linden AM, Baez M, Bergeron M, Schoepp DD (2003) Increased c-Fos expression in the centromedial nucleus of the thalamus in metabotropic glutamate 8 receptor knockout mice following the elevated plus maze test. Neuroscience 121:167–178PubMedCrossRefGoogle Scholar
  36. Liu XH, Han M, Zhu JX, Sun N, Tang JS, Huo FQ, Li J, Xu FY, Du JQ (2012) Metabotropic glutamate subtype 7 and 8 receptors oppositely modulate cardiac nociception in the rat nucleus tractus solitarius. Neuroscience 220:322–329PubMedCrossRefGoogle Scholar
  37. Malherbe P, Kratzeisen C, Lundstrom K, Richards JG, Faull RL, Mutel V (1999) Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Brain Res Mol Brain Res 67:201–210PubMedCrossRefGoogle Scholar
  38. Marabese I, de Novellis V, Palazzo E, Mariani L, Siniscalco D, Rodella L, Rossi F, Maione S (2005) Differential roles of mGlu8 receptors in the regulation of glutamate and gamma-aminobutyric acid release at periaqueductal grey level. Neuropharmacology 49:157–166PubMedCrossRefGoogle Scholar
  39. Marabese I, de Novellis V, Palazzo E, Scafuro MA, Vita D, Rossi F, Maione S (2007a) Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on inflammatory and neuropathic pain in mice. Neuropharmacology 52:253–262PubMedCrossRefGoogle Scholar
  40. Marabese I, Rossi F, Palazzo E, de Novellis V, Starowicz K, Cristino L, Vita D, Gatta L, Guida F, Di Marzo V, Rossi F, Maione S (2007b) Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception. J Neurophysiol 98:43–53PubMedCrossRefGoogle Scholar
  41. Moldrich RX, Beart PM, Jane DE, Chapman AG, Meldrum BS (2001) Anticonvulsant activity of 3,4-dicarboxyphenylglycines in DBA/2 mice. Neuropharmacology 40:732–735PubMedCrossRefGoogle Scholar
  42. Neugebauer V (2008) Group III metabotropic glutamate receptors (mGlu4, mGlu6, mGlu7, and mGlu8). In: Gereau RW, Swanson GT (eds) The glutamate receptors. Humana Press, Springer, Clifton, pp 489–508CrossRefGoogle Scholar
  43. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N (1995) Distributions of the mRNAs for l-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 360:555–570PubMedCrossRefGoogle Scholar
  45. Palazzo E, Fu Y, Ji G, Maione S, Neugebauer V (2008) Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 55:537–545PubMedCentralPubMedCrossRefGoogle Scholar
  46. Palazzo E, Marabese I, Soukupova M, Luongo L, Boccella S, Giordano C, de Novellis V, Rossi F, Maione S (2011) Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci 31:4687–4697PubMedCrossRefGoogle Scholar
  47. Palazzo E, Marabese I, Luongo L, Boccella S, Bellini G, Giordano ME, Rossi F, Scafuro M, de Novellis V, Maione S (2013) Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat. Mol Pain 9:44–55PubMedCentralPubMedCrossRefGoogle Scholar
  48. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976PubMedCrossRefGoogle Scholar
  49. Pitcher MH, Ribeiro-da-Silva A, Coderre TJ (2007) Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors. J Comp Neurol 505:412–423PubMedCrossRefGoogle Scholar
  50. Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164:444–445PubMedCrossRefGoogle Scholar
  51. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10:819–830PubMedCentralPubMedCrossRefGoogle Scholar
  52. Robbins MJ, Starr KR, Honey A, Soffin EM, Rourke C, Jones GA, Kelly FM, Strum J, Melarange RA, Harris AJ, Rocheville M, Rupniak T, Murdock PR, Jones DN, Kew JN, Maycox PR (2007) Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res 1152:215–227PubMedCrossRefGoogle Scholar
  53. Rossi F, Marabese I, De Chiaro M, Boccella S, Luongo L, Guida F, De Gregorio D, Giordano C, de Novellis V, Palazzo E, Maione S (2013) Dorsal striatum metabotropic glutamate receptor 8 affects nocifensive responses and rostral ventromedial medulla cell activity in neuropathic pain conditions. J NeurophysiolGoogle Scholar
  54. Santangelo RM, Acker TM, Zimmerman SS, Katzman BM, Strong KL, Traynelis SF, Liotta DC (2012) Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 22:1337–1352PubMedCentralPubMedCrossRefGoogle Scholar
  55. Saugstad JA, Kinzie JM, Shinohara MM, Segerson TP, Westbrook GL (1997) Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol 51:119–125PubMedGoogle Scholar
  56. Schmid S, Fendt M (2006) Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology 50:154–164PubMedCrossRefGoogle Scholar
  57. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476PubMedCrossRefGoogle Scholar
  58. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522PubMedGoogle Scholar
  59. Stachowicz K, Kłak K, Pilc A, Chojnacka-Wójcik E (2005) Lack of the antianxiety-like effect of (S)-3,4-DCPG, an mGlu8 receptor agonist, after central administration in rats. Pharmacol Rep 57:856–860PubMedGoogle Scholar
  60. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4:131–144PubMedCrossRefGoogle Scholar
  61. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 40:311–318PubMedCrossRefGoogle Scholar
  62. Toms NJ, Jane DE, Kemp MC, Bedingfield JS, Roberts PJ (1996) The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist. Br J Pharmacol 119:851–854PubMedCentralPubMedCrossRefGoogle Scholar
  63. Tong Q, Kirchgessner AL (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 285:992–1003Google Scholar
  64. Tong Q, Ouedraogo R, Kirchgessner AL (2002) Localization and function of group III metabotropic glutamate receptors in rat pancreatic islets. Am J Physiol Endocrinol Metab 282:E1324–E1333PubMedGoogle Scholar
  65. Vardi N, Duvoisin R, Wu G, Sterling P (2000) Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J Comp Neurol 423:402–412PubMedCrossRefGoogle Scholar
  66. Zeilhofer HU, Zeilhofer UB (2008) Spinal dis-inhibition in inflammatory pain. Neurosci Lett 437:170–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Anaesthesiology, Surgery and EmergencyThe Second University of NaplesNaplesItaly
  2. 2.Pharmacology Division, Department of Experimental MedicineThe Second University of NaplesNaplesItaly

Personalised recommendations