Amino Acids

, Volume 46, Issue 4, pp 809–824 | Cite as

Plant amino acid-derived vitamins: biosynthesis and function

Minireview Article


Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock’s feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.


Thiamine Riboflavin Nicotinic acid Pantothenate Pyridoxal Biotin Folic acid Tocopherol 



5-Aminoimidazole ribonucleotide (5-amino-1-(5-phospho-d-ribosyl)imidazole)




Coenzyme A


Flavin adenine dinucleotide


Flavin mononucleotide (Riboflavin-5′-phosphate)




4-Methyl-5-β-hydroxyethylthiazole phosphate


6-Hydroxymethyl-dihydropterin diphosphate


2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate


Nicotinamide adenine dinucleotide (phosphate)




Pyridoxal 5′-phosphate


5-Phospho-α-d-ribose 1-diphosphate


Reactive oxygen species







Research in SM-B laboratory is supported by the BFU 2012-32057 grant from the Spanish Government. JAM holds a FPU fellowship from the Spanish Government.

Conflict of interest

The authors declare no conflict of interest.


  1. Abner EL, Schmitt FA, Mendiondo MS et al (2011) Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci 4:158–170. doi:10.2174/1874609811104020158 PubMedGoogle Scholar
  2. Ahn I-P, Kim S, Lee Y-H (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515. doi:10.1104/pp.104.058693 PubMedCentralPubMedGoogle Scholar
  3. Ahn I-P, Kim S, Lee Y-H, Suh S-C (2007) Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol 143:838–848. doi:10.1104/pp.106.092627 PubMedCentralPubMedGoogle Scholar
  4. Alaei Shahmiri F, Soares MJ, Zhao Y, Sherriff J (2013) High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: a randomized, double-blind cross-over trial. Diabetologia 52:208–212. doi:10.1007/s00125-008-1224-4 Google Scholar
  5. Alban C, Job D, Douce R (2000) Biotin metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 51:17–47. doi:10.1146/annurev.arplant.51.1.17 PubMedGoogle Scholar
  6. Asai S, Mase K, Yoshioka H (2010) A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance. Plant J 62:911–924. doi:10.1111/j.1365-313X.2010.04206.x PubMedGoogle Scholar
  7. Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592. doi:10.1016/j.tplants.2010.07.003 PubMedGoogle Scholar
  8. Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44:739–764. doi:10.1016/j.freeradbiomed.2007.11.010 PubMedGoogle Scholar
  9. Bâ A (2008) Metabolic and structural role of thiamine in nervous tissues. Cell Mol Neurobiol 28:923–931. doi:10.1007/s10571-008-9297-7 PubMedGoogle Scholar
  10. Babaei-Jadidi R, Karachalias N, Kupich C et al (2004) High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47:2235–2246. doi:10.1007/s00125-004-1582-5 PubMedGoogle Scholar
  11. Bast A, Haenen GRMM (2013) Ten misconceptions about antioxidants. Trends Pharmacol Sci 34:430–436. doi:10.1016/ PubMedGoogle Scholar
  12. Bell IR, Morrow FD, Read M et al (1992) Low thyroxine levels in female psychiatric inpatients with riboflavin deficiency: implications for folate-dependent methylation. Acta Psychiatr Scand 85:360–363PubMedGoogle Scholar
  13. Bettendorff L, Wirtzfeld B, Makarchikov AF et al (2007) Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol 3:211–212. doi:10.1038/nchembio867 PubMedGoogle Scholar
  14. Bilski P, Li MY, Ehrenshaft M et al (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71:129–134. doi:10.1562/0031-8655(2000)071<0129:SIPVBP>2.0.CO;2 PubMedGoogle Scholar
  15. Bito T, Ohishi N, Hatanaka Y et al (2013) Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics. J Agric Food Chem 61:3852–3858. doi:10.1021/jf305033s PubMedGoogle Scholar
  16. Bjelakovic GND (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857. doi:10.1001/jama.297.8.842 PubMedGoogle Scholar
  17. Bjelakovic G, Nikolova D, Gluud LL et al (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev Online 3:CD007176. doi:10.1002/14651858.CD007176.pub2
  18. Bjelakovic G, Nikolova D, Gluud C (2013) Antioxidant supplements to prevent mortality. JAMA 310:1178–1179. doi:10.1001/jama.2013.277028 PubMedGoogle Scholar
  19. Block MD, Verduyn C, Brouwer DD, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106. doi:10.1111/j.1365-313X.2004.02277.x PubMedGoogle Scholar
  20. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31. doi:10.1007/s11103-013-0045-0 PubMedGoogle Scholar
  21. Bocobza SE, Malitsky S, Araújo WL et al (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25:288–307. doi:10.1105/tpc.112.106385 PubMedCentralPubMedGoogle Scholar
  22. Bourn D, Prescott J (2002) A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit Rev Food Sci Nutr 42:1–34. doi:10.1080/10408690290825439 PubMedGoogle Scholar
  23. Brandt K, Leifert C, Sanderson R, Seal CJ (2011) Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit Rev Plant Sci 30:177–197. doi:10.1080/07352689.2011.554417 Google Scholar
  24. Brigelius-Flohé R (2007) Adverse effects of vitamin E by induction of drug metabolism. Genes Nutr 2:249–256. doi:10.1007/s12263-007-0055-0 PubMedCentralPubMedGoogle Scholar
  25. Brigelius-Flohé R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46:543–554. doi:10.1016/j.freeradbiomed.2008.12.007 PubMedGoogle Scholar
  26. Briggs W (2006) Flavin-based photoreceptors in plants. In: Silva E, Edwards AM (eds) Flavins. The Royal Society of Chemistry, Cambridge, pp 1–11Google Scholar
  27. Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422:405–421. doi:10.1042/BJ20090722 PubMedGoogle Scholar
  28. Butterworth RF (2003) Thiamin deficiency and brain disorders. Nutr Res Rev 16:277–283. doi:10.1079/NRR200367 PubMedGoogle Scholar
  29. Capuzzi DM, Morgan JM, Brusco OAJ, Intenzo CM (2000) Niacin dosing: relationship to benefits and adverse effects. Curr Atheroscler Rep 2:64–71. doi:10.1007/s11883-000-0096-y PubMedGoogle Scholar
  30. Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucl Acids Res 40:D742–D753. doi:10.1093/nar/gkr1014 PubMedCentralPubMedGoogle Scholar
  31. Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400. doi:10.1093/pcp/pcr085 PubMedCentralPubMedGoogle Scholar
  32. Chakauya E, Coxon KM, Whitney HM et al (2006) Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant 126:319–329. doi:10.1111/j.1399-3054.2006.00683.x Google Scholar
  33. Chen H, Xiong L (2005) Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J 44:396–408. doi:10.1111/j.1365-313X.2005.02538.x PubMedGoogle Scholar
  34. Cheng Z, Sattler S, Maeda H et al (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356. doi:10.1105/tpc.013656 PubMedCentralPubMedGoogle Scholar
  35. Cobessi D, Dumas R, Pautre V et al (2012) Biochemical and structural characterization of the arabidopsis bifunctional enzyme dethiobiotin synthetase–diaminopelargonic acid aminotransferase: evidence for substrate channeling in biotin synthesis. Plant Cell 24:1608–1625. doi:10.1105/tpc.112.097675 PubMedCentralPubMedGoogle Scholar
  36. Combs GF (2012) The vitamins: Fundamental aspects in nutrition and health, 4th edn. Elsevier, AmsterdamGoogle Scholar
  37. Crisp SE, Griffin JB, White BR et al (2004) Biotin supply affects rates of cell proliferation, biotinylation of carboxylases and histones, and expression of the gene encoding the sodium-dependent multivitamin transporter in JAr choriocarcinoma cells. Eur J Nutr 43:23–31. doi:10.1007/s00394-004-0435-9 PubMedGoogle Scholar
  38. De Colibus L, Mattevi A (2006) New frontiers in structural flavoenzymology. Curr Opin Struct Biol 16:722–728. doi:10.1016/ PubMedGoogle Scholar
  39. Dehaye L, Duval M, Viguier D et al (1997) Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein. Plant Mol Biol 35:605–621PubMedGoogle Scholar
  40. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738. doi:10.1146/annurev.arplant.56.032604.144301 PubMedGoogle Scholar
  41. Deng B, Deng S, Sun F et al (2011) Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol Biol 77:185–201. doi:10.1007/s11103-011-9802-0 PubMedGoogle Scholar
  42. Denslow SA, Walls AA, Daub ME (2005) Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol Mol Plant Pathol 66:244–255. doi:10.1016/j.pmpp.2005.09.004 Google Scholar
  43. Di Salvo ML, Contestabile R, Safo MK (2011) Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta BBA Proteins Proteomics 1814:1597–1608. doi:10.1016/j.bbapap.2010.12.006 Google Scholar
  44. Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811. doi:10.1094/PHYTO.2000.90.8.801 PubMedGoogle Scholar
  45. Eggersdorfer M, Laudert D, Létinois U et al (2012) One hundred years of vitamins—a success story of the natural sciences. Angew Chem Int Ed 51:12960–12990. doi:10.1002/anie.201205886 Google Scholar
  46. Ernst IMA, Pallauf K, Bendall JK et al (2013) Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev 12:365–375. doi:10.1016/j.arr.2012.10.002 PubMedGoogle Scholar
  47. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566. doi:10.1093/jxb/erq030 PubMedGoogle Scholar
  48. Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350. doi:10.1039/B210142B PubMedGoogle Scholar
  49. Fitzpatrick TB, Basset GJC, Borel P et al (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414. doi:10.1105/tpc.111.093120 PubMedCentralPubMedGoogle Scholar
  50. Food and Drug Regulations (2013) Consolidated Regulations of Canada, c. 870s. B.13.001. Last amended on 2013-11-02Google Scholar
  51. Fortes C, Boffetta P (2011) Nutritional epidemiological studies in cancer prevention: what went wrong, and how to move forwards. J Cancer Prev 20:518–525. doi:10.1097/CEJ.0b013e3283481e07 Google Scholar
  52. Foyer CH (2010) Mitochondrial redox state, nitrogen metabolism and signalling. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in the post-genomic era. Annu Plant Rev, vol 42. Wiley-Blackwell, New York, pp 287–304Google Scholar
  53. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905PubMedGoogle Scholar
  54. Frank RA, Leeper FJ, Luisi BF (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64:892–905. doi:10.1007/s00018-007-6423-5 Google Scholar
  55. Frédérich M, Delvaux D, Gigliobianco T et al (2009) Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J 276:3256–3268. doi:10.1111/j.1742-4658.2009.07040.x PubMedGoogle Scholar
  56. Funk C (1912) The etiology of the deficiency diseases. J State Med 20:341–368Google Scholar
  57. Gale EA (2004) European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 363:925–931. doi:10.1016/S0140-6736(04)15786-3 PubMedGoogle Scholar
  58. Garcia I, Rodgers M, Pepin R et al (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119:1507–1516. doi:10.1104/pp.119.4.1507 PubMedCentralPubMedGoogle Scholar
  59. Gerdes S, Lerma-Ortiz C, Frelin O et al (2012) Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J Exp Bot 63:5379–5395. doi:10.1093/jxb/ers208 PubMedGoogle Scholar
  60. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40:493–504. doi:10.1016/S0197-0186(01)00120-6 PubMedGoogle Scholar
  61. Goodman M, Bostick RM, Kucuk O, Jones DP (2011) Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 51:1068–1084. doi:10.1016/j.freeradbiomed.2011.05.018 PubMedGoogle Scholar
  62. Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624. doi:10.1016/j.phytochem.2010.06.022 PubMedGoogle Scholar
  63. Guan X, Diez T, Prasad TK et al (1999) Geranoyl-CoA carboxylase: a novel biotin-containing enzyme in plants. Arch Biochem Biophys 362:12–21. doi:10.1006/abbi 1998.1014PubMedGoogle Scholar
  64. Hanson AD, Gregory JF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125. doi:10.1146/annurev-arplant-042110-103819 PubMedGoogle Scholar
  65. Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137. doi:10.1146/annurev.arplant.52.1.119 PubMedGoogle Scholar
  66. Hashida S, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824. doi:10.1093/aob/mcp019 PubMedCentralPubMedGoogle Scholar
  67. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829. doi:10.1128/MMBR.00040-05 PubMedCentralPubMedGoogle Scholar
  68. Havaux M, Ksas B, Szewczyk A et al (2009) Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol 9:130. doi:10.1186/1471-2229-9-130 PubMedCentralPubMedGoogle Scholar
  69. Hellmann H, Mooney S (2010) Vitamin B6: a molecule for human health? Molecules 15:442–459. doi:10.3390/molecules15010442 PubMedGoogle Scholar
  70. Hiza HAB, Bente L, Fungwe T (2008) Nutrient content of the US food supply, 2008. USDA Home Econ Rep 72Google Scholar
  71. Hoffmann GF, Schmitt B, Windfuhr M et al (2007) Pyridoxal 5′-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis 30:96–99. doi:10.1007/s10545-006-0508-4 PubMedGoogle Scholar
  72. Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223. doi:10.1210/er.2009-0026 PubMedCentralPubMedGoogle Scholar
  73. Huang S, Zeng H, Zhang J et al (2011) Characterization of enzymes involved in the interconversions of different forms of vitamin B6 in tobacco leaves. Plant Physiol Biochem 49:1299–1305. doi:10.1016/j.plaphy.2011.08.008 PubMedGoogle Scholar
  74. Huang S, Zhang J, Wang L, Huang L (2013) Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiol Biochem 66:63–67. doi:10.1016/j.plaphy.2013.02.010 PubMedGoogle Scholar
  75. Hunter D, Foster M, McArthur JO et al (2011) Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods. Crit Rev Food Sci Nutr 51:571–582. doi:10.1080/10408391003721701 PubMedGoogle Scholar
  76. Hvas A-M, Juul S, Bech P, Nexø E (2004) Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom 73:340–343. doi:10.1159/000080386 PubMedGoogle Scholar
  77. Ibrahim KE, Juvik JA (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644. doi:10.1021/jf900260d PubMedGoogle Scholar
  78. Ishihara J, Iso H, Inoue M et al (2008) Intake of folate, vitamin B6 and vitamin B12 and the risk of CHD: the Japan Public Health Center-based prospective study cohort I. J Am Coll Nutr 27:127–136PubMedGoogle Scholar
  79. Jabrin S, Ravanel S, Gambonnet B et al (2003) One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol 131:1431–1439. doi:10.1104/pp.016915 PubMedCentralPubMedGoogle Scholar
  80. Jain SK, Lim G (2001) Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na++K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Bio Med 30:232–237. doi:10.1016/S0891-5849(00)00462-7 Google Scholar
  81. Jamai A, Salomé PA, Schilling SH et al (2009) Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21:595–606. doi:10.1105/tpc.108.063289 PubMedCentralPubMedGoogle Scholar
  82. Job C, Laugel S, Duval M et al (2001) Biochemical characterization of atypical biotinylation domains in seed proteins. Seed Sci Res 11:149–161Google Scholar
  83. Jonczyk R, Ronconi S, Rychlik M, Genschel U (2008) Pantothenate synthetase is essential but not limiting for pantothenate biosynthesis in Arabidopsis. Plant Mol Biol 66:1–14. doi:10.1007/s11103-007-9248-6 PubMedGoogle Scholar
  84. Jordan F (2007) Adenosine triphosphate and thiamine cross paths. Nat Chem Biol 3:202–203. doi:10.1038/nchembio0407-202 PubMedGoogle Scholar
  85. Jurgenson CT, Begley TP, Ealick SE (2009) The structural and biochemical foundations of thiamin biosynthesis. Annu Rev Biochem 78:569–603. doi:10.1146/annurev.biochem.78.072407.102340 PubMedGoogle Scholar
  86. Juvany M, Müller M, Munné-Bosch S (2013) Photo-oxidative stress in emerging and senescing leaves: a mirror image? J Exp Bot 64:3087–3098. doi:10.1093/jxb/ert174 PubMedGoogle Scholar
  87. Kaga E, Karademir B, Baykal AT, Ozer NK (2013) Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics 92:260–273. doi:10.1016/j.jprot.2013.06.015 PubMedGoogle Scholar
  88. Kamal-Eldin A, Appelqvist L-Å (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701. doi:10.1007/BF02522884 PubMedGoogle Scholar
  89. Kamanna VS, Kashyap ML (2000) Mechanism of action of niacin on lipoprotein metabolism. Curr Atheroscler Rep 2:36–46. doi:10.1007/s11883-000-0093-1 PubMedGoogle Scholar
  90. Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857. doi:10.1104/pp.106.081091 PubMedCentralPubMedGoogle Scholar
  91. Kim Y-I (1999) Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem 10:66–88. doi:10.1016/S0955-2863(98)00074-6 PubMedGoogle Scholar
  92. Kirkland JB (2009) Niacin status impacts chromatin structure. J Nutr 139:2397–2401. doi:10.3945/jn.109.111757 PubMedGoogle Scholar
  93. Kothapalli N, Camporeale G, Kueh A et al (2005) Biological functions of biotinylated histones. J Nutr Biochem 16:446–448. doi:10.1016/j.jnutbio.2005.03.025 PubMedCentralPubMedGoogle Scholar
  94. Kumar S, Aalbersberg B (2006) Nutrient retention in foods after earth-oven cooking compared to other forms of domestic cooking: 2. Vitamins. J Food Compos Anal 19:311–320. doi:10.1016/j.jfca.2005.06.007 Google Scholar
  95. Kupke T, Hernández-Acosta P, Culiáñez-Macià FA (2003) 4′-phosphopantetheine and coenzyme A biosynthesis in plants. J Biol Chem 278:38229–38237. doi:10.1074/jbc.M306321200 PubMedGoogle Scholar
  96. Lam YT, Stocker R, Dawes IW (2010) The lipophilic antioxidants α-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae. Free Radic Biol Med 49:237–244. doi:10.1016/j.freeradbiomed.2010.04.008 PubMedGoogle Scholar
  97. Lamesch P, Berardini TZ, Li D et al (2011) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucl Acids Res 40:D1202–D1210. doi:10.1093/nar/gkr1090 PubMedCentralPubMedGoogle Scholar
  98. Larsson SC, Orsini N, Wolk A (2010) Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA 303:1077–1083. doi:10.1001/jama.2010.263 PubMedGoogle Scholar
  99. Lee I-M, Cook NR, Gaziano JM et al (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer. The women’s health study: a randomized controlled trial. J Am Med Assoc 294:56–65. doi:10.1001/jama.294.1.56 Google Scholar
  100. Lešková E, Kubíková J, Kováčiková E et al (2006) Vitamin losses: retention during heat treatment and continual changes expressed by mathematical models. J Food Compos Anal 19:252–276. doi:10.1016/j.jfca.2005.04.014 Google Scholar
  101. Li G-M, Presnell SR, Gu L (2003) Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem 14:568–575. doi:10.1016/S0955-2863(03)00115-3 PubMedGoogle Scholar
  102. Li J, Brader G, Helenius E et al (2012a) Biotin deficiency causes spontaneous cell death and activation of defense signaling. Plant J 70:315–326. doi:10.1111/j.1365-313X.2011.04871.x PubMedGoogle Scholar
  103. Li Y, Yin Y, Bi Y, Wang D (2012b) Effect of riboflavin on postharvest disease of Asia pear and the possible mechanisms involved. Phytoparasitica 40:261–268. doi:10.1007/s12600-011-0216-y Google Scholar
  104. Lienhart W-D, Gudipati V, Macheroux P (2013) The human flavoproteome. Arch Biochem Biophys 535:150–162. doi:10.1016/ PubMedCentralPubMedGoogle Scholar
  105. Loizeau K, Brouwer VD, Gambonnet B et al (2008) A genome-wide and metabolic analysis determined the adaptive response of Arabidopsis cells to folate depletion induced by methotrexate. Plant Physiol 148:2083–2095. doi:10.1104/pp.108.130336 PubMedCentralPubMedGoogle Scholar
  106. Lu’o’ng KVQ, Nguyen LTH (2013) The role of thiamine in cancer: possible genetic and cellular signaling mechanisms. Cancer Genomics Proteomics 10:169–186PubMedGoogle Scholar
  107. Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628. doi:10.1007/s11738-012-0988-9 Google Scholar
  108. Lyon G (2007) Agents that can elicit induced resistance. In: Walters D, Newton A, Lyon G (eds) induc. Blackwell Publishing, Resist. Plant Def. Sustain. Approach Crop Prot, pp 9–29Google Scholar
  109. Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634. doi:10.1111/j.1742-4658.2011.08202.x PubMedGoogle Scholar
  110. Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265. doi:10.1016/j.pbi.2007.04.006 PubMedGoogle Scholar
  111. Maiese K, Chong ZZ, Hou J, Shang YC (2009) The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14:3446–3485. doi:10.3390/molecules14093446 PubMedCentralPubMedGoogle Scholar
  112. Manthey KC, Griffin JB, Zempleni J (2002) Biotin supply affects expression of biotin transporters, biotinylation of carboxylases and metabolism of interleukin-2 in Jurkat cells. J Nutr 132:887–892PubMedGoogle Scholar
  113. Marquet A, Tse Sum Bui B, Florentin D (2001) Biosynthesis of biotin and lipoic acid. Vitam Horm 61:51–101Google Scholar
  114. Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  115. Martí-Carvajal AJ, Solà I, Lathyris D et al (2013) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev Online. doi:10.1002/14651858.CD006612.pub3 Google Scholar
  116. Martin C (2013) The interface between plant metabolic engineering and human health. Curr Opin Biotechnol 24:344–353. doi:10.1016/j.copbio.2012.11.005 PubMedGoogle Scholar
  117. Mathew MC, Ervin A-M, Tao J, Davis RM (2012) Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004567.pub2 Google Scholar
  118. Matsui A, Yin Y, Yamanaka K et al (2007) Metabolic fate of nicotinamide in higher plants. Physiol Plant 131:191–200. doi:10.1111/j.1399-3054.2007.00959.x PubMedGoogle Scholar
  119. Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283. doi:10.1016/j.tibs.2006.03.003 PubMedGoogle Scholar
  120. Mehrshahi P, Gonzalez-Jorge S, Akhtar TA et al (2010) Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant J 64:267–279. doi:10.1111/j.1365-313X.2010.04336.x PubMedGoogle Scholar
  121. Mehrshahi P, Stefano G, Andaloro JM et al (2013) Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc Natl Acad Sci 110:12126–12131. doi:10.1073/pnas.1306331110 PubMedCentralPubMedGoogle Scholar
  122. Mène-Saffrané L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309PubMedGoogle Scholar
  123. Miller BDD, Welch RM (2013) Food system strategies for preventing micronutrient malnutrition. Food Policy 42:115–128. doi:10.1016/j.foodpol.2013.06.008 Google Scholar
  124. Mooney S, Hellmann H (2010) Vitamin B6: killing two birds with one stone? Phytochemistry 71:495–501. doi:10.1016/j.phytochem.2009.12.015 PubMedGoogle Scholar
  125. Morandini P (2013) Control limits for accumulation of plant metabolites: brute force is no substitute for understanding. Plant Biotechnol J 11:253–267. doi:10.1111/pbi.12035 PubMedGoogle Scholar
  126. Mozafar A (1993) Nitrogen fertilizers and the amount of vitamins in plants: a review. J Plant Nutr 16:2479–2506. doi:10.1080/01904169309364698 Google Scholar
  127. Mozafar A (1994) Enrichment of some B-vitamins in plants with application of organic fertilizers. Plant Soil 167:305–311. doi:10.1007/BF00007957 Google Scholar
  128. Mozzarelli A, Bettati S, Campanini B et al (2011) The multifaceted pyridoxal 5′-phosphate-dependent O-acetylserine sulfhydrylase. Biochim Biophys Acta BBA Proteins Proteomics 1814:1497–1510. doi:10.1016/j.bbapap.2011.04.011 Google Scholar
  129. Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. doi:10.1016/j.jplph.2005.04.022 PubMedGoogle Scholar
  130. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19. doi:10.1104/pp.112.205690 PubMedCentralPubMedGoogle Scholar
  131. Nagaraj RH, Sarkar P, Mally A et al (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 402:110–119. doi:10.1016/S0003-9861(02)00067-X PubMedGoogle Scholar
  132. Nakayama H, Horie T, Yonamine I et al (2005) Improving salt tolerance in plant cells. Plant Biotechnol 22:477–487. doi:10.5511/plantbiotechnology.22.477 Google Scholar
  133. Nazki FH, Sameer AS, Ganaie BA (2014) Folate: metabolism, genes, polymorphisms and the associated diseases. Gene 533:11–20. doi:10.1016/j.gene.2013.09.063 PubMedGoogle Scholar
  134. Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant, Cell Environ 29:409–425. doi:10.1111/j.1365-3040.2005.01476.x Google Scholar
  135. Patton DA, Schetter AL, Franzmann LH et al (1998) An embryo-defective mutant of Arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol 116:935–946PubMedCentralPubMedGoogle Scholar
  136. Percudani R, Peracchi A (2009) The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10:273. doi:10.1186/1471-2105-10-273 PubMedCentralPubMedGoogle Scholar
  137. Poiroux-Gonord F, Bidel LPR, Fanciullino A-L et al (2010) Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agric Food Chem 58:12065–12082. doi:10.1021/jf1037745 PubMedGoogle Scholar
  138. Powers HJ (2003) Riboflavin (vitamin B2) and health. Am J Clin Nutr 77:1352–1360PubMedGoogle Scholar
  139. Puthusseri B, Divya P, Lokesh V, Neelwarne B (2012) Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). Plant Foods Hum Nutr 67:162–170. doi:10.1007/s11130-012-0285-1 PubMedGoogle Scholar
  140. Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167:961–968. doi:10.1016/j.plantsci.2004.06.019 Google Scholar
  141. Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143. doi:10.1093/jxb/ern253 PubMedGoogle Scholar
  142. Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:2. doi:10.1186/1471-2229-12-2 PubMedCentralPubMedGoogle Scholar
  143. Raschke M, Boycheva S, Crèvecoeur M et al (2011) Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J 66:414–432. doi:10.1111/j.1365-313X.2011.04499.x PubMedGoogle Scholar
  144. Rébeillé F, Ravanel S, Marquet A et al (2007) Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels. Nat Prod Rep 24:949–962. doi:10.1039/B703104C PubMedGoogle Scholar
  145. Roje S (2006) S-Adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686–1698. doi:10.1016/j.phytochem.2006.04.019 PubMedGoogle Scholar
  146. Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904–1921. doi:10.1016/j.phytochem.2007.03.038 PubMedGoogle Scholar
  147. Rubio S, Whitehead L, Larson TR et al (2008) The coenzyme A biosynthetic enzyme phosphopantetheine adenylyltransferase plays a crucial role in plant growth, salt/osmotic stress resistance, and seed lipid storage. Plant Physiol 148:546–556. doi:10.1104/pp.108.124057 PubMedCentralPubMedGoogle Scholar
  148. Rutkowski M, Grzegorczyk K (2012) Adverse effects of antioxidative vitamins. Int J Occup Med Environ Health 25:105–121. doi:10.2478/S13382-012-0022-x PubMedGoogle Scholar
  149. Ryšlavá H, Doubnerová V, Kavan D, Vaněk O (2013) Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 92:80–109. doi:10.1016/j.jprot.2013.03.025 PubMedGoogle Scholar
  150. Sattler SE, Gilliland LU, Magallanes-Lundback M et al (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell Online 16:1419–1432. doi:10.1105/tpc.021360 Google Scholar
  151. Sauve AA (2008) NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther 324:883–893. doi:10.1124/jpet.107.120758 PubMedGoogle Scholar
  152. Schachter M (2005) Strategies for modifying high-density lipoprotein cholesterol: a role for nicotinic acid. Cardiovasc Drugs Ther 19:415–422Google Scholar
  153. Scheible W-R, Morcuende R, Czechowski T et al (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499. doi:10.1104/pp.104.047019 PubMedCentralPubMedGoogle Scholar
  154. Schirch V, Szebenyi DM (2005) Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol 9:482–487. doi:10.1016/j.cbpa.2005.08.017 PubMedGoogle Scholar
  155. Schomburg I, Chang A, Placzek S et al (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucl Acids Res 41:D764–D772. doi:10.1093/nar/gks1049 PubMedCentralPubMedGoogle Scholar
  156. Schulz P, Neukermans J, Van Der Kelen K et al (2012) Chemical PARP inhibition enhances growth of arabidopsis and reduces anthocyanin accumulation and the activation of stress protective mechanisms. PLoS ONE. doi:10.1371/journal.pone.0037287 Google Scholar
  157. Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613 PubMedGoogle Scholar
  158. Shewry PR, Van Schaik F, Ravel C et al (2011) Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J Agric Food Chem 59:10564–10571. doi:10.1021/jf202762b PubMedGoogle Scholar
  159. Singh RK, Ali SA, Nath P, Sane VA (2011) Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango. J Exp Bot 62:3375–3385. doi:10.1093/jxb/err006 PubMedCentralPubMedGoogle Scholar
  160. Song GC, Choi HK, Ryu C-M (2013) The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann Bot 111:925–934. doi:10.1093/aob/mct049 PubMedPubMedCentralGoogle Scholar
  161. Sosa V, Moliné T, Somoza R et al (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390. doi:10.1016/j.arr.2012.10.004 PubMedGoogle Scholar
  162. Stanner S, Hughes J, Kelly C, Buttriss J (2004) A review of the epidemiological evidence for the “antioxidant hypothesis”. Public Health Nutr 7:407–422. doi:10.1079/PHN2003543 PubMedGoogle Scholar
  163. Stover PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62:S3–S12. doi:10.1111/j.1753-4887.2004.tb00070.x PubMedGoogle Scholar
  164. Suh JR, Herbig AK, Stover PJ (2001) New perspectives on folate catabolism. Annu Rev Nutr 21:255–282. doi:10.1146/annurev.nutr.21.1.255 PubMedGoogle Scholar
  165. Suzuki Y, Yang X, Aoki Y et al (2005) Mutations in the holocarboxylase synthetase gene HLCS. Hum Mutat 26:285–290. doi:10.1002/humu.20204 PubMedGoogle Scholar
  166. Taheri P, Tarighi S (2011) A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J Plant Physiol 168:1114–1122. doi:10.1016/j.jplph.2011.01.001 PubMedGoogle Scholar
  167. Tanaka T, Yamamoto D, Sato T et al (2011) Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity. J Nutr Sci Vitaminol (Tokyo) 57:192–196. doi:10.3177/jnsv.57.192 Google Scholar
  168. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. doi:10.1126/science.1183700 PubMedGoogle Scholar
  169. Titiz O, Tambasco-Studart M, Warzych E et al (2006) PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J 48:933–946. doi:10.1111/j.1365-313X.2006.02928.x PubMedGoogle Scholar
  170. Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci CMLS 70:863–891. doi:10.1007/s00018-012-1096-0 Google Scholar
  171. Tunc-Ozdemir M, Miller G, Song L et al (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432. doi:10.1104/pp.109.140046 PubMedCentralPubMedGoogle Scholar
  172. Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429PubMedGoogle Scholar
  173. Wachter A, Tunc-Ozdemir M, Grove BC et al (2007) Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell Online 19:3437–3450. doi:10.1105/tpc.107.053645 Google Scholar
  174. Webb ME, Smith AG, Abell C (2004) Biosynthesis of pantothenate. Nat Prod Rep 21:695–721. doi:10.1039/b316419p PubMedGoogle Scholar
  175. Webb ME, Marquet A, Mendel RR et al (2007) Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 24:988–1008. doi:10.1039/B703105J PubMedGoogle Scholar
  176. Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499SPubMedGoogle Scholar
  177. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364. doi:10.1093/jxb/erh064 PubMedGoogle Scholar
  178. Woese K, Lange D, Boess C, Bögl KW (1997) A comparison of organically and conventionally grown foods—results of a review of the relevant literature. J Sci Food Agric 74:281–293. doi:10.1002/(SICI)1097-0010(199707)74:3<281:AID-JSFA794>3.0.CO;2-Z Google Scholar
  179. Wolf B (2005) Biotinidase: its role in biotinidase deficiency and biotin metabolism. J Nutr Biochem 16:441–445. doi:10.1016/j.jnutbio.2005.03.024 PubMedGoogle Scholar
  180. Wu W, Kang S, Zhang D (2013) Association of vitamin B6, vitamin B12 and methionine with risk of breast cancer: a dose–response meta-analysis. Brit J Cancer 109:1926–1944. doi:10.1038/bjc.2013.438 PubMedGoogle Scholar
  181. Ye Z, Song H (2008) Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil 15:26–34. doi:10.1097/HJR.0b013e3282f11f95 PubMedGoogle Scholar
  182. Zempleni J (2005) Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 25:175–196. doi:10.1146/annurev.nutr.25.121304.131724 PubMedGoogle Scholar
  183. Zempleni J, Hassan YI, Wijeratne SS (2008) Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab 3:715–724. doi:10.1586/17446651.3.6.715 PubMedCentralPubMedGoogle Scholar
  184. Zempleni J, Li Y, Xue J, Cordonier EL (2011) The role of holocarboxylase synthetase in genome stability is mediated partly by epigenomic synergies between methylation and biotinylation events. Epigenetics 6:892–894. doi:10.4161/epi.6.7.15544 PubMedCentralPubMedGoogle Scholar
  185. Zempleni J, Teixeira DC, Kuroishi T et al (2012) Biotin requirements for DNA damage prevention. Mutat Res 733:58–60. doi:10.1016/j.mrfmmm.2011.08.001 PubMedCentralPubMedGoogle Scholar
  186. Zhang X, Mou Z (2009) Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J 57:302–312. doi:10.1111/j.1365-313X.2008.03687.x PubMedGoogle Scholar
  187. Zhang S, Yang X, Sun M et al (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167–174. doi:10.1111/j.1744-7909.2008.00763.x PubMedGoogle Scholar
  188. Zhang H, Deng X, Miki D et al (2012) Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell Online 24:1230–1241. doi:10.1105/tpc.112.096149 Google Scholar
  189. Zheng X-Q, Hayashibe E, Ashihara H (2005) Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J Exp Bot 56:1615–1623. doi:10.1093/jxb/eri156 PubMedGoogle Scholar
  190. Zhou H-R, Zhang F–F, Ma Z-Y et al (2013a) Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis. Plant Cell Online 25:2545–2559. doi:10.1105/tpc.113.114678 Google Scholar
  191. Zhou J, Sun A, Xing D (2013b) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64:3261–3272. doi:10.1093/jxb/ert166 PubMedGoogle Scholar
  192. Zhu C, Naqvi S, Gomez-Galera S et al (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555. doi:10.1016/j.tplants.2007.09.007 PubMedGoogle Scholar
  193. Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836. doi:10.1146/annurev.arplant.57.032905.105421 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Departament de Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations