Amino Acids

, Volume 46, Issue 3, pp 633–642

Protective effects of polyamine depletion in mouse models of type 1 diabetes: implications for therapy

  • Sarah A. Tersey
  • Stephanie C. Colvin
  • Bernhard Maier
  • Raghavendra G. Mirmira
Original Paper


The underlying pathophysiology of type 1 diabetes involves autoimmune-mediated islet inflammation, leading to dysfunction and death of insulin-secreting islet β cells. Recent studies have shown that polyamines, which are essential for mRNA translation, cellular replication, and the formation of the hypusine modification of eIF5A may play an important role in the progression of cellular inflammation. To test a role for polyamines in type 1 diabetes pathogenesis, we administered the ornithine decarboxylase inhibitor difluoromethylornithine to two mouse models—the low-dose streptozotocin model and the NOD model—to deplete intracellular polyamines, and administered streptozotocin to a third model, which was haploinsufficient for the gene encoding the hypusination enzyme deoxyhypusine synthase. Subsequent development of diabetes and/or glucose intolerance was monitored. In the low-dose streptozotocin mouse model, continuous difluoromethylornithine administration dose-dependently reduced the incidence of hyperglycemia and led to the preservation of β cell area, whereas in the NOD mouse model of autoimmune diabetes difluoromethylornithine reduced diabetes incidence by 50 %, preserved β cell area and insulin secretion, led to reductions in both islet inflammation and potentially diabetogenic Th17 cells in pancreatic lymph nodes. Difluoromethylornithine treatment reduced hypusinated eIF5A levels in both immune cells and islets. Animals haploinsufficient for the gene encoding deoxyhypusine synthase were partially protected from hyperglycemia induced by streptozotocin. Collectively, these studies suggest that interventions that interfere with polyamine biosynthesis and/or eIF5A hypusination may represent viable approaches in the treatment of diabetes.


Polyamine Hypusine Diabetes Islet Mouse 


  1. Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci USA 108:19018–19023. doi:10.1073/pnas.1111008108 PubMedCrossRefGoogle Scholar
  2. Atkinson MA, Bluestone JA, Eisenbarth GS et al (2011) How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 60:1370–1379. doi:10.2337/db10-1797 PubMedCrossRefGoogle Scholar
  3. Barry DP, Asim M, Leiman DA et al (2011) Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction. PLoS ONE 6:e17510. doi:10.1371/journal.pone.0017510 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bhattacharya S, Ray RM, Viar MJ, Johnson LR (2003) Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-alpha in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 285:G980–G991. doi:10.1152/ajpgi.00206.2003 PubMedGoogle Scholar
  5. Bjelakovic G, Beninati S, Bjelakovic B et al (2010) Does polyamine oxidase activity influence the oxidative metabolism of children who suffer of diabetes mellitus? Mol Cell Biochem 341:79–85. doi:10.1007/s11010-010-0439-0 PubMedCrossRefGoogle Scholar
  6. Boerner BP, Sarvetnick NE (2011) Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 1243:103–118. doi:10.1111/j.1749-6632.2011.06340.x PubMedCrossRefGoogle Scholar
  7. Brooks WH (2012) Autoimmune diseases and polyamines. Clin Rev Allergy Immunol 42:58–70. doi:10.1007/s12016-011-8290-y PubMedCrossRefGoogle Scholar
  8. Cabrera SM, Rigby MR, Mirmira RG (2012) Targeting regulatory T Cells in the treatment of type 1 diabetes mellitus. Curr Mol Med 12:1261–1272. doi:10.2174/156652412803833634 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cabrera SM, Colvin SC, Tersey SA et al (2013) Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the NOD mouse model of type 1 diabetes. Clin Exp Immunol 172:375–382. doi:10.1111/cei.12068 PubMedCrossRefGoogle Scholar
  10. Calderon B, Suri A, Miller MJ, Unanue ER (2008) Dendritic cells in islets of Langerhans constitutively present beta cell-derived peptides bound to their class II MHC molecules. Proc Natl Acad Sci USA 105:6121–6126. doi:10.1073/pnas.0801973105 PubMedCrossRefGoogle Scholar
  11. Evans-Molina C, Robbins RD, Kono T et al (2009) PPAR-γ activation restores islet function in diabetic mice through reduction of ER stress and maintenance of euchromatin structure. Mol Cell Biol 29:2053–2067. doi:10.1128/MCB.01179-08 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Ferrannini E, Mari A, Nofrate V et al (2010) Progression to diabetes in relatives of type 1 diabetic patients: mechanisms and mode of onset. Diabetes 59:679–685. doi:10.2337/db09-1378 PubMedCrossRefGoogle Scholar
  13. Grankvist K, Marklund SL, Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398PubMedGoogle Scholar
  14. Haskins K, Bradley B, Powers K et al (2003) Oxidative stress in type 1 diabetes. Ann N Y Acad Sci 1005:43–54PubMedCrossRefGoogle Scholar
  15. Hougaard DM, Nielsen JH, Larsson LI (1986) Localization and biosynthesis of polyamines in insulin-producing cells. Biochem J 238:43–47PubMedGoogle Scholar
  16. Husseiny MI, Kuroda A, Kaye AN et al (2012) Development of a quantitative methylation-specific polymerase chain reaction method for monitoring beta cell death in type 1 diabetes. PLoS ONE 7:e47942. doi:10.1371/journal.pone.0047942 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51. doi:10.1016/j.biocel.2009.07.009 PubMedCrossRefGoogle Scholar
  18. Ize-Ludlow D, Lightfoot YL, Parker M et al (2011) Progressive erosion of β-cell function precedes the onset of hyperglycemia in the NOD mouse model of type 1 diabetes. Diabetes 60:2086–2091. doi:10.2337/db11-0373 PubMedCrossRefGoogle Scholar
  19. Kruse M, Rosorius O, Kratzer F et al (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191:1581–1590PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10:501–513. doi:10.1038/nri2787 PubMedCrossRefGoogle Scholar
  21. Lukic ML, Stosic-Grujicic S, Shahin A (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol 6:119–128PubMedCentralPubMedCrossRefGoogle Scholar
  22. Maier B, Ogihara T, Trace AP et al (2010) The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 120:2156–2170. doi:10.1172/JCI38924 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414:792–798. doi:10.1038/414792a PubMedCrossRefGoogle Scholar
  24. Matthews JB, Staeva TP, Bernstein PL et al (2010) Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group. Clin Exp Immunol 160:176–184. doi:10.1111/j.1365-2249.2010.04153.x PubMedCentralPubMedCrossRefGoogle Scholar
  25. Nishiki Y, Adewola A, Hatanaka M et al (2013) Translational control of inducible nitric oxide synthase by p38 MAPK in islet beta-cells. Mol Endocrinol 27:336–349. doi:10.1210/me.2012-1230 PubMedCrossRefGoogle Scholar
  26. O’Sullivan-Murphy B, Urano F (2012) ER stress as a trigger for β-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 61:780–781. doi:10.2337/db12-0091 PubMedCrossRefGoogle Scholar
  27. Padgett LE, Broniowska KA, Hansen PA et al (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35. doi:10.1111/j.1749-6632.2012.06826.x PubMedCentralPubMedCrossRefGoogle Scholar
  28. Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500. doi:10.1007/s00726-009-0408-7 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Poulin R, Pelletier G, Pegg AE (1995) Induction of apoptosis by excessive polyamine accumulation in ornithine decarboxylase-overproducing L1210 cells. Biochem J 311(Pt 3):723–727PubMedGoogle Scholar
  30. Ray RM, Viar MJ, Yuan Q, Johnson LR (2000) Polyamine depletion delays apoptosis of rat intestinal epithelial cells. Am J Physiol Cell Physiol 278:C480–C489PubMedGoogle Scholar
  31. Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 29:317–333PubMedCrossRefGoogle Scholar
  32. Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642. doi:10.1111/j.1582-4934.2005.tb00493.x PubMedCrossRefGoogle Scholar
  33. Sherry NA, Kushner JA, Glandt M et al (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55:3238–3245. doi:10.2337/db05-1034 PubMedCrossRefGoogle Scholar
  34. Singh AB, Thomas TJ, Thomas T et al (1992) Differential effects of polyamine homologues on the prevention of DL-alpha-difluoromethylornithine-mediated inhibition of malignant cell growth and normal immune response. Cancer Res 52:1840–1847PubMedGoogle Scholar
  35. Sjöholm A (1996) Effects of secretagogues on insulin biosynthesis and secretion in polyamine-depleted pancreatic beta-cells. Am J Physiol 270:C1105–C1110PubMedGoogle Scholar
  36. Sjöholm A, Arkhammar P, Welsh N et al (1993) Enhanced stimulus-secretion coupling in polyamine-depleted rat insulinoma cells. An effect involving increased cytoplasmic Ca2+, inositol phosphate generation, and phorbol ester sensitivity. J Clin Invest 92:1910–1917. doi:10.1172/JCI116784 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17. doi:10.1371/journal.pmed.0030017 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Stull ND, Breite A, McCarthy RC et al (2012) Mouse islet of langerhans isolation using a combination of purified collagenase and neutral protease. J Vis Exp 67:e4137. doi:10.3791/4137 Google Scholar
  39. Sunkara PS, Rosenberger AL (1987) Antimetastatic activity of DL-alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, in mice. Cancer Res 47:933–935PubMedGoogle Scholar
  40. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546PubMedGoogle Scholar
  41. Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465. doi:10.1084/jem.20040139 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Templin AT, Maier B, Nishiki Y et al (2011) Deoxyhypusine synthase haploinsufficiency attenuates acute cytokine signaling. Cell Cycle 10:1–7. doi:10.4161/cc.10.7.15206 CrossRefGoogle Scholar
  43. Tersey SA, Nishiki Y, Templin AT et al (2012) Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61:818–827. doi:10.2337/db11-1293 PubMedCrossRefGoogle Scholar
  44. Thomas TJ, Messner RP (1991) Difluoromethylornithine therapy of female NZB/W mice. J Rheumatol 18:215–222PubMedGoogle Scholar
  45. Welsh N, Sjöholm A (1988) Polyamines and insulin production in isolated mouse pancreatic islets. Biochem J 252:701–707PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Sarah A. Tersey
    • 1
  • Stephanie C. Colvin
    • 1
  • Bernhard Maier
    • 1
  • Raghavendra G. Mirmira
    • 1
    • 2
  1. 1.Department of Pediatrics and the Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisUSA
  2. 2.Departments of Medicine, Cellular and Integrative Physiology, and Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations