Amino Acids

, Volume 46, Issue 3, pp 543–552 | Cite as

Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites

  • Candace S. Hayes
  • Karen DeFeo-Mattox
  • Patrick M. Woster
  • Susan K. Gilmour
Original Article

Abstract

Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.

Keywords

Polyamines Ornithine decarboxylase Skin carcinogenesis Stem cell Acetylpolyamine oxidase 

Notes

Acknowledgments

This work was supported by National Institutes of Health grant CA70739 (S.K.G.). We are grateful to Carol S. Trempus and Rebecca J. Morris for their invaluable criticisms and advice. We would also like to thank Kristin Hayden for manuscript preparation.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38(2):353–368PubMedCrossRefGoogle Scholar
  2. Ahmad N, Gilliam AC, Katiyar SK, O’Brien TG, Mukhtar H (2001) A definitive role of ornithine decarboxylase in photocarcinogenesis. Am J Pathol 159(3):885–892PubMedCrossRefGoogle Scholar
  3. Berton TR, Wang XJ, Zhou Z, Kellendonk C, Schutz G, Tsai S, Roop DR (2000) Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 26(2):160–161PubMedGoogle Scholar
  4. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126(12):2565–2575PubMedCrossRefGoogle Scholar
  5. Chen Y, Megosh LC, Gilmour SK, Sawicki JA, O’Brien TG (2000) K6/ODC transgenic mice as a sensitive model for carcinogen identification. Toxicol Lett 116(1–2):27–35PubMedCrossRefGoogle Scholar
  6. Coleman CS, Pegg AE, Megosh LC, Guo Y, Sawicki JA, O’Brien TG (2002) Targeted expression of spermidine/spermine N1-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. Carcinogenesis 23(2):359–364PubMedCrossRefGoogle Scholar
  7. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337PubMedCrossRefGoogle Scholar
  8. Gilmour SK, Birchler M, Smith MK, Rayca K, Mostochuk J (1999) Effect of elevated levels of ornithine decarboxylase on cell cycle progression in skin. Cell Growth Differ 10:739–748PubMedGoogle Scholar
  9. Hayes CS, Defeo K, Dang H, Trempus CS, Morris RJ, Gilmour SK (2011) A prolonged and exaggerated wound response with elevated ODC activity mimics early tumor development. Carcinogenesis 32(9):1340–1348PubMedCrossRefGoogle Scholar
  10. Hobbs CA, Paul BA, Gilmour SK (2003) Elevated levels of polyamines alter chromatin in murine skin and tumors without global changes in nucleosome acetylation. Exp Cell Res 290(2):427–436PubMedCrossRefGoogle Scholar
  11. Hobbs CA, Wei G, Defeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66(16):8116–8122PubMedCrossRefGoogle Scholar
  12. Iskander K, Gaikwad A, Paquet M, Long DJ 2nd, Brayton C, Barrios R, Jaiswal AK (2005) Lower induction of p53 and decreased apoptosis in NQO1-null mice lead to increased sensitivity to chemical-induced skin carcinogenesis. Cancer Res 65(6):2054–2058PubMedCrossRefGoogle Scholar
  13. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354PubMedCrossRefGoogle Scholar
  14. Koza RA, Megosh LC, Palmieri M, O’Brien TG (1991) Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis 12(9):1619–1625PubMedCrossRefGoogle Scholar
  15. Kwak MK, Kensler TW, Casero RA Jr (2003) Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem Biophys Res Commun 305(3):662–670PubMedCrossRefGoogle Scholar
  16. Lan L, Hayes CS, Laury-Kleintop L, Gilmour S (2005) Suprabasal induction of ornithine decarboxylase in adult mouse skin is sufficient to activate keratinocytes. J Invest Dermatol 124:602–614PubMedCrossRefGoogle Scholar
  17. Li S, Park H, Trempus CS, Gordon D, Liu Y, Cotsarelis G, Morris RJ (2012) A keratin 15 containing stem cell population from the hair follicle contributes to squamous papilloma development in the mouse. Mol Carcinog. doi:  10.1002/mc.21896. [Epub ahead of print]
  18. Liu Y, Lyle S, Yang Z, Cotsarelis G (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 121(5):963–968PubMedCrossRefGoogle Scholar
  19. Morris R, Argyris TS (1983) Epidermal cell cycle and transit times during hyperplastic growth induced by abrasion or treatment with 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 43:4935–4942PubMedGoogle Scholar
  20. Morris RJ, Potten CS (1999) Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 112(4):470–475PubMedCrossRefGoogle Scholar
  21. Morris RJ, Fischer SM, Slaga TJ (1986) Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Res 46(6):3061–3066PubMedGoogle Scholar
  22. Morris RJ, Tryson KA, Wu KQ (2000) Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res 60(2):226–229PubMedGoogle Scholar
  23. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417PubMedCrossRefGoogle Scholar
  24. O’Brien TG (1976) The induction of ornithine decarboxylase as an early, possibly obligatory event in mouse skin carcinogenesis. Cancer Res 36:2644–2653PubMedGoogle Scholar
  25. O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57(13):2630–2637PubMedGoogle Scholar
  26. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3(6):444–451PubMedCrossRefGoogle Scholar
  27. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894. doi: 10.1002/iub.230 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Peralta Soler A, Gilliard G, Megosh L, George K, O’Brien TG (1998) Polyamines regulate expression of the neoplastic phenotype in mouse skin. Cancer Res 58:1654–1659PubMedGoogle Scholar
  29. Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr (2005) Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280(48):39843–39851PubMedCrossRefGoogle Scholar
  30. Scalabrino G, Pigatto P, Ferioli ME, Modena D, Puerari M, Caru A (1980) Levels of activity of the polyamine biosynthetic decarboxylases as indicators of degree of malignancy of human cutaneous epitheliomas. J Invest Dermatol 74(3):122–124PubMedCrossRefGoogle Scholar
  31. Seiler N, Duranton B, Raul F (2002) The polyamine oxidase inactivator MDL 72527. Prog Drug Res 59:1–40PubMedGoogle Scholar
  32. Shi C, Cooper TK, McCloskey DE, Glick AB, Shantz LM, Feith DJ (2012) S-adenosylmethionine decarboxylase overexpression inhibits mouse skin tumor promotion. Carcinogenesis 33(7):1310–1318PubMedCrossRefGoogle Scholar
  33. Slaga TJ (1995) Inhibition of skin tumor initiation, promotion, and progression by antioxidants and related compounds. Crit Rev Food Sci Nutr 35(1–2):51–57PubMedCrossRefGoogle Scholar
  34. Smith MK, Trempus CS, Gilmour SK (1998) Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin. Carcinogenesis 19(8):1409–1415PubMedCrossRefGoogle Scholar
  35. Tani H, Morris RJ, Kaur P (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 97(20):10960–10965PubMedCrossRefGoogle Scholar
  36. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102(4):451–461. doi: S0092-8674(00)00050-7 PubMedCrossRefGoogle Scholar
  37. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120(4):501–511PubMedCrossRefGoogle Scholar
  38. Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M, Cotsarelis G, Nijhof JG, Peckham J, Flagler N, Kissling G, Humble MM, King LC, Adams LD, Desai D, Amin S, Tennant RW (2007) CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 67(9):4173–4181PubMedCentralPubMedCrossRefGoogle Scholar
  39. Wang Y, Casero RA Jr (2006) Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem 139(1):17–25PubMedGoogle Scholar
  40. Wang Y, Murray-Stewart T, Devereux W, Hacker A, Frydman B, Woster PM, Casero RA Jr (2003) Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res Commun 304(4):605–611PubMedCrossRefGoogle Scholar
  41. Wang X, Feith DJ, Welsh P, Coleman CS, Lopez C, Woster PM, O’Brien TG, Pegg AE (2007) Studies of the mechanism by which increased spermidine/spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis 28(11):2404–2411. doi: 10.1093/carcin/bgm162 PubMedCrossRefGoogle Scholar
  42. Wei G, DeFeo K, Hayes CS, Woster PM, Mandik-Nayak L, Gilmour SK (2008) Elevated ornithine decarboxylase levels activate ataxia telangiectasia mutated-DNA damage signaling in normal keratinocytes. Cancer Res 68(7):2214–2222. doi: 10.1158/0008-5472.CAN-07-5030 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Welsh PA, Sass-Kuhn S, Prakashagowda C, McCloskey D, Feith D (2012) Spermine synthase overexpression in vivo does not increase susceptibility to DMBA/TPA skin carcinogenesis or Min-Apc intestinal tumorigenesis. Cancer Biol Ther 13(6):358–368PubMedCrossRefGoogle Scholar
  44. White AC, Tran K, Khuu J, Dang C, Cui Y, Binder SW, Lowry WE (2011) Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci USA 108(18):7425–74230PubMedCrossRefGoogle Scholar
  45. Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M (2007) Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 292(3):C1204–C1215PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Candace S. Hayes
    • 1
  • Karen DeFeo-Mattox
    • 1
  • Patrick M. Woster
    • 2
  • Susan K. Gilmour
    • 1
  1. 1.Lankenau Institute for Medical ResearchWynnewoodUSA
  2. 2.Department of Drug Discovery and Biomedical SciencesThe Medical University of South CarolinaCharlestonUSA

Personalised recommendations