Amino Acids

, Volume 45, Issue 4, pp 957–973 | Cite as

Foldamers of β-peptides: conformational preference of peptides formed by rigid building blocks. The first MI-IR spectra of a triamide nanosystem

  • Gábor Pohl
  • Esther Gorrea
  • Vicenç Branchadell
  • Rosa M. Ortuño
  • András Perczel
  • György Tarczay
Original Article

Abstract

To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA)n-Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two “zigzag” conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a “zigzag” and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a β-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, β- and especially (ACBA)n type oligopeptides could thus be used to rationally design and influence foldamer’s structural preferences.

Keywords

β-peptides Peptide folding Matrix-isolation IR spectroscopy Conformational analysis Synthetic biopolymers 

Supplementary material

726_2013_1552_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1154 kb)

References

  1. Baker J, Jarzecki AA, Pulay P (1998) Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields. J Phys Chem A 102(8):1412–1424CrossRefGoogle Scholar
  2. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) Quantum chemistry in parallel with PQS. J Comput Chem 30(2):317–335Google Scholar
  3. Bazsó G, Magyarfalvi G, Tarczay G (2012a) Near-infrared laser induced conformational change and UV laser photolysis of glycine in low-temperature matrices: observation of a short-lived conformer. J Mol Struct 1025:33–42CrossRefGoogle Scholar
  4. Bazsó G, Magyarfalvi G, Tarczay G (2012b) Tunneling lifetime of the ttc/VIp conformer of glycine in low-temperature matrices. J Phys Chem A 116(43):10539–10547PubMedCrossRefGoogle Scholar
  5. Bazsó G, Najbauer EE, Magyarfalvi G, Tarczay G (2013) Near-infrared laser induced conformational change of alanine in low-temperature matrixes and the tunneling lifetime of its conformer VI. J Phys Chem A 117(9):1952–1962Google Scholar
  6. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  7. Beke T, Somlai C, Perczel A (2006) Toward a rational design of β-peptide structures. J Comput Chem 27(1):20–38PubMedCrossRefGoogle Scholar
  8. Beke T, Somlai C, Magyarfalvi G, Perczel A, Tarczay G (2009) Chiral and achiral fundamental conformational building units of β-peptides: a matrix isolation conformational study on Ac-β-HGly-NHMe and Ac-β-HAla-NHMe. J Phys Chem B 113(22):7918–7926PubMedCrossRefGoogle Scholar
  9. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102(3):939–947CrossRefGoogle Scholar
  10. Boeckx B, Maes G (2012a) Potential energy surface and matrix isolation FT-IR study of isoleucine. J Phys Chem A 116(12):3247–3258PubMedCrossRefGoogle Scholar
  11. Boeckx B, Maes G (2012b) The conformational behavior and H-bond structure of asparagine: a theoretical and experimental matrix-isolation FT-IR study. Biophys Chem 165–166:62–73PubMedCrossRefGoogle Scholar
  12. Boeckx B, Maes G (2012c) Experimental and theoretical observation of different intramolecular H-bonds in lysine conformations. J Phys Chem B 116(41):12441–12449PubMedCrossRefGoogle Scholar
  13. Boeckx B, Maes G (2012d) Comparison of the conformational behavior of amino acids and N-acetylated amino acids: a theoretical and matrix-isolation FT-IR study of N-acetylglycine. J Phys Chem A 116(8):1956–1965PubMedCrossRefGoogle Scholar
  14. Boeckx B, Maes G (2012e) Estimation of the rotamerization constants of different conformations of N-acetylalanine: a theoretical and matrix-isolation FT-IR study. Spectrochim Acta A 86:366–374CrossRefGoogle Scholar
  15. Boeckx B, Ramaekers R, Maes G (2010) A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine. J Mol Spectrosc 261(2):73–81CrossRefGoogle Scholar
  16. Boeckx B, Ramaekers R, Maes G (2011) The influence of the peptide bond on the conformation of amino acids: a theoretical and FT-IR matrix-isolation study of N-acetylproline. Biophys Chem 159(2–3):247–256PubMedCrossRefGoogle Scholar
  17. Dobrowolski JC, Jamróz MH, Kołos R, Rode JE, Sadlej J (2007) Theoretical prediction and the First IR matrix observation of several l-cysteine molecule conformers. Chem Phys Chem 8(7):1085–1094PubMedCrossRefGoogle Scholar
  18. Dobrowolski JC, Jamróz HM, Kolos R, Rode JE, Sadlej J (2008) IR low-temperature matrix and ab initio study on β-alanine conformers. Chem Phys Chem 9(14):2042–2051PubMedCrossRefGoogle Scholar
  19. Fábri C, Szidarovszky T, Magyarfalvi G, Tarczay G (2011) Gas-phase and Ar-matrix SQM scaling factors for various DFT functionals with basis sets including polarization and diffuse functions. J Phys Chem A 115(18):4640–4649PubMedCrossRefGoogle Scholar
  20. Fernandes C, Faure S, Pereira E, Théry V, Declerck V, Guillot R, Aitken DJ (2010) 12-helix folding of cyclobutane β-amino acid oligomers. Org Lett 12(16):3606–3609PubMedCrossRefGoogle Scholar
  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CTGoogle Scholar
  22. Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G (2010) Is β-homo-proline a pseudo-γ-turn forming element of β-peptides? An IR and VCD spectroscopic study on Ac-β-HPro-NHMe in cryogenic matrices and solutions. Phys Chem Chem Phys 12(41):13603–13615PubMedCrossRefGoogle Scholar
  23. Gorrea E, Pohl G, Nolis P, Celis S, Burusco KK, Branchadell V, Perczel A, Ortuño RM (2012) Secondary structure of short β-peptides as the chiral expression of monomeric building units: a rational and predictive model. J Org Chem 77(21):9795–9806PubMedCrossRefGoogle Scholar
  24. Grenie Y, Garrigou-Lagrange C (1972) Infrared spectra of glycine isotopic species isolated in an argon or nitrogen matrix. J Mol Spectrosc 41(2):240–246CrossRefGoogle Scholar
  25. Grenie Y, Lassegues JC, Garrigou-Lagrange C (1970) Infrared spectrum of matrix-isolated glycine. J Chem Phys 53(7):2980–2982CrossRefGoogle Scholar
  26. Grenie Y, Avignon M, Garrigou-Lagrange C (1975) Molecular structure study of dipeptides isolated in an argon matrix by infrared spectroscopy. J Mol Struct 24(2):293–307CrossRefGoogle Scholar
  27. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519CrossRefGoogle Scholar
  28. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261CrossRefGoogle Scholar
  29. Ivanov AYu, Plokhotnichenko AM, Izvekov V, Sheina GG, Blagoi YuP (1997) FTIR investigation of the effect of matrices (Kr, Ar, Ne) on the UV-induced isomerization of the monomeric links of biopolymers. J Mol Struct 408–409:459–462CrossRefGoogle Scholar
  30. Ivanov AYu, Sheina G, Blagoi YuP (1999) FTIR spectroscopic study of the UV-induced rotamerization of glycine in the low temperature matrices (Kr, Ar, Ne). Spectrochim Acta Part A 55(1):219–228Google Scholar
  31. Jarmelo S, Lapinski L, Nowak MJ, Carey PR, Fausto R (2005) Preferred conformers and photochemical (λ > 200 nm) reactivity of serine and 3,3-dideutero-serine in the neutral form. J Phys Chem A 109(25):5689–5707PubMedCrossRefGoogle Scholar
  32. Jarmelo S, Reva ID, Rozenberg M, Carey PR, Fausto R (2006) Low-temperature infrared spectra and hydrogen bonding in polycrystalline dl-serine and deuterated derivatives. Vib Spectr 41(1):73–82CrossRefGoogle Scholar
  33. Kaczor A, Reva ID, Proniewicz LM, Fausto R (2006) Importance of entropy in the conformational equilibrium of phenylalanine: a matrix-isolation infrared spectroscopy and density functional theory study. J Phys Chem A 110(7):2360–2370PubMedCrossRefGoogle Scholar
  34. Kaczor A, Reva ID, Proniewicz LM, Fausto R (2007) Matrix-isolated monomeric tryptophan: electrostatic interactions as nontrivial factors stabilizing conformers. J Phys Chem A 111(15):2957–2965PubMedCrossRefGoogle Scholar
  35. Lambie B, Ramaekers R, Maes G (2003) On the contribution of intramolecular H-bonding entropy to the conformational stability of alanine conformations. Spectrochim Acta A 59(6):1387–1397CrossRefGoogle Scholar
  36. Lambie B, Ramaekers R, Maes G (2004) Conformational behavior of serine: an experimental matrix-isolation FT-IR and theoretical DFT(B3LYP)/6-31++G** study. J Phys Chem A 108(47):10426–10433CrossRefGoogle Scholar
  37. Lapinski L, Nowak MJ, Reva ID, Rostkowska H, Fausto R (2010) NIR-laser-induced selective rotamerization of hydroxy conformers of cytosine. Phys Chem Chem Phys 12(33):9615–9618PubMedCrossRefGoogle Scholar
  38. Lapinski L, Reva I, Nowak MJ, Fausto R (2011) Five isomers of monomeric cytosine and their interconversions induced by tunable UV laser light. Phys Chem Chem Phys 13(20):9676–9684PubMedCrossRefGoogle Scholar
  39. Lee C, Yang W, Parr RG (1998) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  40. Mohamadi F, Richards NG, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC, MacroModel 7.0 (1990) Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467Google Scholar
  41. Nunes CM, Lapinski L, Fausto R, Reva I (2013) Near-IR laser generation of a high-energy conformer of l-alanine and the mechanism of its decay in a low-temperature nitrogen matrix. J Chem Phys 138(12):125101PubMedCrossRefGoogle Scholar
  42. Pohl G, Perczel A, Vass E, Magyarfalvi G, Tarczay G (2007) A matrix isolation study on Ac-Gly-NHMe and Ac-l-Ala-NHMe, the simplest chiral and achiral building blocks of peptides and proteins. Phys Chem Chem Phys 9(33):4698–4708PubMedCrossRefGoogle Scholar
  43. Pohl G, Perczel A, Vass E, Magyarfalvi G, Tarczay G (2008) A matrix isolation study on Ac–l-Pro–NH2: a frequent structural element of β- and γ-turns of peptides and proteins. Tetrahedron 64(9):2126–2133CrossRefGoogle Scholar
  44. Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105(24):7037–7047CrossRefGoogle Scholar
  45. Ramaekers R, Pajak J, Rospenk M, Maes G (2005) Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6-31++G** calculations of the vibrational and conformational properties of tyrosine. Spectrochim Acta Part A 61(7):1347–1356CrossRefGoogle Scholar
  46. Reva ID, Plokhotnichenko AM, Stepanian SG, Ivanov AYu, Radchenko ED, Sheina GG, Blagoi YP (1995) The rotamerization of conformers of glycine isolated in inert gas matrices. An infrared spectroscopic study. Chem Phys Lett 232(1–2):141–148 (1995) Erratum. Chem Phys Lett 235(5–6):617–617CrossRefGoogle Scholar
  47. Reva ID, Stepanian SG, Plokhotnichenko A, Radchenko ED, Sheina G, Blagoi YuP (1994) Infrared matrix isolation studies of amino acids. Molecular structure of proline. J Mol Struct 318:1–13CrossRefGoogle Scholar
  48. Rosado MTS, Duarte MLRS, Fausto R (1997) Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine. J Mol Struct 410–411:343–348Google Scholar
  49. Sheina GG, Radchenko ED, Ivanov AY, Stepanian SG, Blagoi YP (1988) Oscillating spectra of leucine. Zh Fiz Khim 62:985–990Google Scholar
  50. Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998a) Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A 102(6):1041–1054CrossRefGoogle Scholar
  51. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1998b) Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. J Phys Chem A 102(24):4623–4629CrossRefGoogle Scholar
  52. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1999) Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers. J Phys Chem A 103(22):4404–4412CrossRefGoogle Scholar
  53. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (2001) Conformers of nonionized proline. Matrix-isolation infrared and post-hartree-fock ab initio study. J Phys Chem A 105(47):10664–10672CrossRefGoogle Scholar
  54. Tarczay G, Góbi S, Vass E, Magyarfalvi G (2009) Model peptide–water complexes in Ar matrix: complexation induced conformation change and chirality transfer. Vib Spectrosc 50(1):21–28CrossRefGoogle Scholar
  55. Torres E, Gorrea E, Da Silva E, Nolis P, Branchadell V, Ortuño RM (2009) Prevalence of eight-membered hydrogen-bonded rings in some bis(cyclobutane) β-dipeptides including residues with trans stereochemistry. Org Lett 11(11):2301–2304PubMedCrossRefGoogle Scholar
  56. Torres E, Gorrea E, Burusco KK, Da Silva E, Nolis P, Rúa F, Boussert S, Díez-Pérez I, Dannenberg S, Izquierdo S, Giralt E, Jaime C, Branchadell V, Ortuño RM (2010) Folding and self-assembling with beta-oligomers based on (1R,2S)-2-aminocyclobutane-1-carboxylic acid. Org Biomol Chem 8(3):564–575PubMedCrossRefGoogle Scholar
  57. Wierzejewska M, Olbert-Majkut A (2009) Conformational behavior of the simplest dipeptide: formylglycine. Quantum chemical and matrix isolation FTIR study. Chem Phys Lett 476(4–6):287–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Gábor Pohl
    • 1
    • 2
  • Esther Gorrea
    • 3
  • Vicenç Branchadell
    • 3
  • Rosa M. Ortuño
    • 3
  • András Perczel
    • 1
    • 2
  • György Tarczay
    • 4
  1. 1.Laboratory of Structural Chemistry and Biology, Institute of ChemistryEötvös UniversityBudapest 112Hungary
  2. 2.Protein Modelling Group MTA-ELTE, Institute of ChemistryEötvös UniversityBudapest 112Hungary
  3. 3.Department of ChemistryUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Laboratory of Molecular Spectroscopy, Institute of ChemistryEötvös UniversityBudapest 112Hungary

Personalised recommendations