Amino Acids

, Volume 44, Issue 5, pp 1267–1277 | Cite as

Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways

  • Isabelle J. SchalkEmail author
  • Laurent Guillon
Invited Review


Siderophore production and utilization is one of the major strategies deployed by bacteria to get access to iron, a key nutrient for bacterial growth. The biological function of siderophores is to solubilize iron in the bacterial environment and to shuttle it back to the cytoplasm of the microorganisms. This uptake process for Gram-negative species involves TonB-dependent transporters for translocation across the outer membranes. In Escherichia coli and many other Gram-negative bacteria, ABC transporters associated with periplasmic binding proteins import ferrisiderophores across cytoplasmic membranes. Recent data reveal that in some siderophore pathways, this step can also be carried out by proton-motive force-dependent permeases, for example the ferrichrome and ferripyochelin pathways in Pseudomonas aeruginosa. Iron is then released from the siderophores in the bacterial cytoplasm by different enzymatic mechanisms depending on the nature of the siderophore. Another strategy has been reported for the pyoverdine pathway in P. aeruginosa: iron is released from the siderophore in the periplasm and only siderophore-free iron is transported into the cytoplasm by an ABC transporter having two atypical periplasmic binding proteins. This review presents recent findings concerning both ferrisiderophore and siderophore-free iron transport across bacterial cytoplasmic membranes and considers current knowledge about the mechanisms involved in iron release from siderophores.


Siderophore Iron uptake Iron homeostasis TonB-dependent transporters ABC transporters 



This work was partly funded by the Centre National de la Recherche Scientifique, by grants from the Centre International de Recherche au Frontière de la Chimie (FRC), from the ANR (Agence Nationale de Recherche, ANR-08-BLAN-0309-02) and from the Association Vaincre la Mucoviscidose. L. Guillon had a fellowship from the Centre International de Recherche au Frontière de la Chimie (FRC).


  1. Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN (2009) Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 131:12682–12692. doi: 10.1021/ja903051q PubMedCrossRefGoogle Scholar
  2. Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Metal Ions Biological Systems 35:239–327Google Scholar
  3. Barchini E, Cowart RE (1996) Extracellular iron reductase activity produced by Listeria monocytogenes. Arch Microbiol 166:51–57PubMedCrossRefGoogle Scholar
  4. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N et al (2007) Plant carbohydrate scavenging through tonb-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224PubMedCrossRefGoogle Scholar
  5. Bohnke R, Matzanke BF (1995) The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative. Biometals 8:223–230PubMedCrossRefGoogle Scholar
  6. Borths EL, Locher KP, Lee AT, Rees DC (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–16647PubMedCrossRefGoogle Scholar
  7. Braud A, Hannauer M, Mislin GLA, Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:5317–5325. doi: 10.1128/JB.00010-09 CrossRefGoogle Scholar
  8. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009b) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091. doi: 10.1111/j.1462-2920.2008.01838.x PubMedCrossRefGoogle Scholar
  9. Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145PubMedGoogle Scholar
  10. Brickman TJ, McIntosh MA (1992) Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J Biol Chem 267:12350–12355PubMedGoogle Scholar
  11. Brillet K, Reimmann C, Mislin GLA, Noël S, Rognan D, Schalk IJ, Cobessi D (2011) Pyochelin enantiomers and their outer membrane siderophore transporters in fluorescent Pseudomonads: structural bases of a unique enantiospecific recognition. J Am Chem Soc 133:16503–16509. doi: 10.1021/ja205504z PubMedCrossRefGoogle Scholar
  12. Brillet K, Ruffenach F, Adams H, Journet L, Gasser V, Hoegy F et al (2012) An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. ACS Chem Biol, in pressGoogle Scholar
  13. Butterton JR, Calderwood SB (1994) Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol 176:5631–5638PubMedGoogle Scholar
  14. Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J et al (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882PubMedCrossRefGoogle Scholar
  15. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773PubMedCrossRefGoogle Scholar
  16. Cheng Q, Park JT (2002) Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184:6434–6436PubMedCrossRefGoogle Scholar
  17. Chu BC, Vogel HJ (2011) A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem 392:39–52. doi: 10.1515/BC.2011.012 PubMedCrossRefGoogle Scholar
  18. Clarke TE, Ku SY, Dougan DR, Vogel HJ, Tari LW (2000) The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat Struct Biol 7:287–291PubMedCrossRefGoogle Scholar
  19. Clarke TE, Braun V, Winkelmann G, Tari LW, Vogel HJ (2002) X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J Biol Chem 277:13966–13972PubMedCrossRefGoogle Scholar
  20. Creutz C (1981) The complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452CrossRefGoogle Scholar
  21. Cuiv PO, Clarke P, Lynch D, O’Connell M (2004) Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005PubMedCrossRefGoogle Scholar
  22. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128:22–23PubMedCrossRefGoogle Scholar
  23. Dhungana S, Anderson DS, Mietzner TA, Crumbliss AL (2005) Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport. Biochemistry 44:9606–9618PubMedCrossRefGoogle Scholar
  24. Elkins MF, Earhart CF (1989) Nucleotide sequence and regulation of the Escherichia coli gene for ferrienterobactin transport protein FepB. J Bacteriol 171:5443–5451PubMedGoogle Scholar
  25. Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21:523–531. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  26. Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:956–963PubMedCrossRefGoogle Scholar
  27. Fetherston JD, Bertolino VJ, Perry RD (1999) YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289–299PubMedCrossRefGoogle Scholar
  28. Fuchs R, Schafer M, Geoffroy V, Meyer JM (2001) Siderotyping: a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57PubMedCrossRefGoogle Scholar
  29. Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ (2007) Real-time FRET visualization of ferric-pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J Biol Chem 282:2987–2995PubMedCrossRefGoogle Scholar
  30. Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V, Meyer JM et al (2009) FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol Microbiol 72:1246–1259PubMedCrossRefGoogle Scholar
  31. Hamed MY, Silver J, Wilson MT (1983) Studies of the reactions of ferric iron with gluthatione and some related thiols. Inorg Chem Acta 78:1–11CrossRefGoogle Scholar
  32. Hannauer M, Barda Y, Mislin GL, Shanzer A, Schalk IJ (2010) The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechansim with acylation of the siderophore and a recycling of the modified desferrichrome. J Bacteriol 192:1212–1220. doi: 10.1128/JB.01539-09 PubMedCrossRefGoogle Scholar
  33. Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708. doi: 10.1111/j.1462-2920.2011.02674 PubMedCrossRefGoogle Scholar
  34. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682PubMedCrossRefGoogle Scholar
  35. Harrington JM, Crumbliss AL (2009) The redox hypothesis in siderophore-mediated iron uptake. Biometals 22:679–689. doi: 10.1007/s10534-009-9233-4 PubMedCrossRefGoogle Scholar
  36. Harris DC, Aisen P (1973) Facilitation of Fe(II) autoxidation by Fe(II) complexing agents. Biochim Biophys Acta 329:156–158PubMedCrossRefGoogle Scholar
  37. Hartman A, Braun V (1980) Iron transport in Escherichia coli: uptake and modification of ferrichrome. J Bacteriol 143:246–255Google Scholar
  38. Hider RC, Kong X (2011a) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. doi: 10.1039/b906679a CrossRefGoogle Scholar
  39. Hider RC, Kong XL (2011b) Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179–1187. doi: 10.1007/s10534-011-9476-8 PubMedCrossRefGoogle Scholar
  40. Hoegy F, Lee X, Noël S, Mislin GL, Rognan D, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent Pseudomonads. J Biol Chem 284:14949–14957. doi: 10.1074/jbc.M900606200 PubMedCrossRefGoogle Scholar
  41. Hoegy F, Gwynn MN, Schalk IJ (2010) Susceptibility of Pseudomonas aeruginosa to catechol-substituted cephalosporin is unrelated to the pyochelin-Fe transporter FptA. Amino Acids 38:1627–1629. doi: 10.1007/s00726-009-0353-5 PubMedCrossRefGoogle Scholar
  42. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390PubMedCrossRefGoogle Scholar
  43. Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:20440–20445. doi: 10.1073/pnas.0908760106 PubMedCrossRefGoogle Scholar
  44. Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13:4684–4694PubMedGoogle Scholar
  45. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  46. Lee W, van Baalen M, Jansen VA (2012) An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett 15:119–125. doi: 10.1111/j.1461-0248.2011.01717 PubMedCrossRefGoogle Scholar
  47. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:11075–11084PubMedCrossRefGoogle Scholar
  48. Llamas MA, Sparrius M, Kloet R, Jimenez CR, Vandenbroucke-Grauls C, Bitter W (2006) The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188:1882–1891PubMedCrossRefGoogle Scholar
  49. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1793–1800CrossRefGoogle Scholar
  50. Loomis L, Raymond KN (1991) Solution equilibria of enterobactin complexes. Inorg Chem 30:906–911CrossRefGoogle Scholar
  51. Mademidis A, Koster W (1998) Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake. Mol Gen Genet 258:156–165PubMedCrossRefGoogle Scholar
  52. Mademidis A, Killmann H, Kraas W, Flechsler I, Jung G, Braun V et al (1997) ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol Microbiol 26:1109–1123PubMedCrossRefGoogle Scholar
  53. Matzanke BF, Anemuller S, Schunemann V, Trautwein AX, Hantke K (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43:1386–1392PubMedCrossRefGoogle Scholar
  54. Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM (2002) Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun 70:3419–3426PubMedCrossRefGoogle Scholar
  55. Michel L, Bachelard A, Reimmann C (2007) Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153:1508–1518PubMedCrossRefGoogle Scholar
  56. Mies KA, Wirgau JI, Crumbliss AL (2006) Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Biometals 19:115–126PubMedCrossRefGoogle Scholar
  57. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451PubMedCrossRefGoogle Scholar
  58. Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA (2006) Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61:1413–1427PubMedCrossRefGoogle Scholar
  59. Miethke M, Hou J, Marahiel MA (2011) The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50:10951–10964. doi: 10.1021/bi201517h PubMedCrossRefGoogle Scholar
  60. Millis KK, Weaver KH, Rabenstein DL (1993) Oxidation/reduction potential of glutathione. J Org Chem 58:4144–4146CrossRefGoogle Scholar
  61. Mislin GLA, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ (2006) Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa. J Mol Biol 357:1437–1448PubMedCrossRefGoogle Scholar
  62. Morley CG, Bezkorovainy A (1983) Identification of the iron chelate in hepatocyte cytosol. IRCS Med Sci 11:1106–1107Google Scholar
  63. Muller A, Wilkinson AJ, Wilson KS, Duhme-Klair AK (2006) An [{Fe(mecam)}2]6- bridge in the crystal structure of a ferric enterobactin binding protein. Angew Chem Int Ed Engl 45:5132–5136PubMedCrossRefGoogle Scholar
  64. Perry RD, Fetherston JD (2011) Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 13:808–817. doi: 10.1016/j.micinf.2011.04.008 PubMedCrossRefGoogle Scholar
  65. Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686PubMedCrossRefGoogle Scholar
  66. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588PubMedCrossRefGoogle Scholar
  67. Reimmann C (2012) Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–1324. doi: 10.1099/mic.0.057430-0 PubMedCrossRefGoogle Scholar
  68. Schalk IJ (2008) Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J Inorg Biochemi 102:1159–1169. doi: 10.1016/j.jinorgbio.2007.11.017 CrossRefGoogle Scholar
  69. Schalk IJ (2013) Innovation and originalities in the strategies developed by bacteria to get access to iron. Chembiochem 14:293–294. doi: 10.1002/cbic.201200738 Google Scholar
  70. Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41:1663–1671PubMedCrossRefGoogle Scholar
  71. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. doi: 10.1111/j.1462-2920.2011.02556 PubMedCrossRefGoogle Scholar
  72. Schalk IJ, Mislin GL, Brillet K (2012) Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69:37–66. doi: 10.1016/B978-0-12-394390-3.00002-1 PubMedCrossRefGoogle Scholar
  73. Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33:330–338. doi: 10.1016/j.tibs.2008.04.012 PubMedCrossRefGoogle Scholar
  74. Shea CM, McIntosh MA (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5:1415–1428PubMedCrossRefGoogle Scholar
  75. Spasojevic I, Boukhalfa H, Stevens RD, Crumbliss AL (2001) Aqueous solution speciation of Fe(III) complexes with dihydroxamate siderophores alcaligin and rhodotorulic acid and synthetic analogues using electrospray ionization mass spectrometry. Inorg Chem 40:49–58PubMedCrossRefGoogle Scholar
  76. Stephens DL, Choe MD, Earhart CF (1995) Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141(Pt 7):1647–1654PubMedCrossRefGoogle Scholar
  77. Williams KE, Yandel JK (1982) Outer-sphere electron-transfer reactions of ascorbate anions. Aust J Chem 35:1133–1144CrossRefGoogle Scholar
  78. Woo JS, Zeltina A, Goetz BA, Locher KP (2012) X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol. doi: 10.1038/nsmb.2417 PubMedGoogle Scholar
  79. Wyckoff EE, Payne SM (2011) The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol 81:1446–1458PubMedCrossRefGoogle Scholar
  80. Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20:405–416PubMedCrossRefGoogle Scholar
  81. Yeterian E, Martin LW, Lamont IL, Schalk IJ (2010) An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. Environ Microbiol Report 2:412–418. doi: 10.1016/j.febslet.2010.10.051 CrossRefGoogle Scholar
  82. Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553PubMedCrossRefGoogle Scholar
  83. Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363–2372PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.UMR 7242, IREBS, ESBSUniversité de Strasbourg-CNRSIllkirch, StrasbourgFrance

Personalised recommendations