Advertisement

Amino Acids

, Volume 44, Issue 5, pp 1391–1395 | Cite as

Increasing effects of S-methyl-l-cysteine on the extracellular d-serine concentrations in the rat medial frontal cortex

  • Sayuri Ishiwata
  • Shigehiro Ogata
  • Asami Umino
  • Hirohisa Shiraku
  • Yoshitaka Ohashi
  • Yasushi Kajii
  • Toru NishikawaEmail author
Short Communication

Abstract

In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.

Keywords

Asc-1 transporter In vivo microdialysis Medial frontal cortex S-Methyl-l-cysteine d-Serine 

Notes

Acknowledgments

This work was supported by the CREST (Core Research for Evolutional Science and Technology) program funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

None.

References

  1. Bracy DS, Handlogten ME, Barber EF, Han HP, Kilberg MS (1986) Cis-inhibition, trans-inhibition, and repression of hepatic amino acid transport mediated by System A. Substrate specificity and other properties. J Biol Chem 261(4):1514–1520PubMedGoogle Scholar
  2. Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H, Kanai Y (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J Biol Chem 275(13):9690–9698PubMedCrossRefGoogle Scholar
  3. Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous d-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 60(2):783–786PubMedCrossRefGoogle Scholar
  4. Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66(3):635–643. doi: 10.1016/0306-4522(94)00597-4 PubMedCrossRefGoogle Scholar
  5. Kanai Y, Hediger MA (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol 479(1-3):237–247. doi: 10.1016/j.ejphar.2003.08.073 PubMedCrossRefGoogle Scholar
  6. Kanematsu S, Ishii S, Umino A, Fujihira T, Kashiwa A, Yamamoto N, Kurumaji A, Nishikawa T (2006) Evidence for involvement of glial cell activity in the control of extracellular d-serine contents in the rat brain. J Neural Transm 113(11):1717–1721. doi: 10.1007/s00702-006-0517-3 PubMedCrossRefGoogle Scholar
  7. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795. doi: 10.1007/s00424-003-1117-9 PubMedCrossRefGoogle Scholar
  8. Matthews JN, Altman DG, Campbell MJ, Royston P (1990) Analysis of serial measurements in medical research. BMJ 300(6719):230–235PubMedCrossRefGoogle Scholar
  9. Nishijima K, Kashiwa A, Hashimoto A, Iwama H, Umino A, Nishikawa T (1996) Differential effects of phencyclidine and methamphetamine on dopamine metabolism in rat frontal cortex and striatum as revealed by in vivo dialysis. Synapse 22(4):304–312. doi: 10.1002/(SICI)1098-2396(199604)22:4 PubMedCrossRefGoogle Scholar
  10. Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3169–3183. doi: 10.1016/j.jchromb.2011.08.030 PubMedCrossRefGoogle Scholar
  11. Paxinos G, Watson C (2005) The Rat Brain in stereotaxic coordinates, 5th edn. Elsevier academic press, AmsterdamGoogle Scholar
  12. Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A, Fremeau RT Jr (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na +/glutamate cotransporters. J Biol Chem 268(21):15351–15355PubMedGoogle Scholar
  13. Thomsen C, Helboe L, Egebjerg JJ (2003) Use of asc-1 inhibitors to treat neurological and psychiatric disorders. World International Property Organization patent application, WO 2003/077998. http://patentscope.wipo.int/search/en/WO2003077998. Accessed 25 Sept. 2003
  14. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na + -dependent neutral amino acid transporter. J Biol Chem 271(25):14883–14890PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Sayuri Ishiwata
    • 1
  • Shigehiro Ogata
    • 1
  • Asami Umino
    • 1
  • Hirohisa Shiraku
    • 1
  • Yoshitaka Ohashi
    • 2
  • Yasushi Kajii
    • 2
    • 3
  • Toru Nishikawa
    • 1
    Email author
  1. 1.Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Research DivisionMitsubishi Tanabe Pharma CorporationYokohamaJapan
  3. 3.Scientific Project Group, Medical, AbbVie GKTokyoJapan

Personalised recommendations