Advertisement

Amino Acids

, Volume 43, Issue 5, pp 1823–1831 | Cite as

The role of d-amino acids in amyotrophic lateral sclerosis pathogenesis: a review

  • Praveen Paul
  • Jacqueline de Belleroche
Review Article

Abstract

A potential role for d-amino acids in motor neuron disease/amyotrophic lateral sclerosis (ALS) is emerging. d-Serine, which is an activator/co-agonist at the N-methyl-d-aspartate glutamate receptor subtype, is elevated both in spinal cord from sporadic cases of ALS and in an animal model of ALS. Furthermore, we have shown that a mutation in d-amino acid oxidase (DAO), an enzyme strongly localized to spinal cord motor neurons and brain stem motor nuclei, is associated with familial ALS. DAO plays an important role in regulating levels of d-serine, and its function is impaired by the presence of this mutation and this may contribute to the pathogenic process in ALS. In sporadic ALS cases, elevated d-serine may arise from induction of serine racemase, its synthetic enzyme, caused by cell stress and inflammatory processes thought to contribute to disease progression. Both these abnormalities in d-serine metabolism lead to an increase in synaptic d-serine which may contribute to disease pathogenesis.

Keywords

Amyotrophic lateral sclerosis (ALS) Motor neuron disease Familial ALS d-Amino acid oxidase (DAO) Serine racemase (SR) 

Notes

Acknowledgments

We are grateful to the Motor neurone Disease Association (UK) and American ALS Association for funding this research.

References

  1. Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324–334PubMedCrossRefGoogle Scholar
  2. Chen H-J, de Belleroche J (2012) Endoplasmic reticulum (ER) stress in amyotrophic lateral sclerosis (ALS). In: Agostinis P, Samali A (eds) Endoplasmic reticulum stress in health and disease. Springer, Berlin (in press)Google Scholar
  3. D’Aniello A, Vetere A, Fisher GH, Cusano G, Chavez M, Petrucelli L (1992) Presence of d-alanine in proteins of normal and Alzheimer human brain. Brain Res 592:44–48PubMedCrossRefGoogle Scholar
  4. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630PubMedCrossRefGoogle Scholar
  5. Fisher GH, D’Aniello A, Vetere A, Padula L, Cusano GP, Man EH (1991) Free d-aspartate and d-alanine in normal and Alzheimer brain. Brain Res Bull 26:983–985PubMedCrossRefGoogle Scholar
  6. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236PubMedCrossRefGoogle Scholar
  7. Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1–42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491PubMedCrossRefGoogle Scholar
  8. Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y (2005) Spatial learning and long term potentiation of mutant mice lacking d-amino acid oxidase. Neurosci Res 53:34–38PubMedCrossRefGoogle Scholar
  9. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358:123–126PubMedCrossRefGoogle Scholar
  10. Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J (2010) Familial amyotrophic lateral sclerosis is associated with a mutation in d-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–7561PubMedCrossRefGoogle Scholar
  11. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654PubMedCrossRefGoogle Scholar
  12. Moreno S, Nardacci R, Cimini A, Ceru MP (1999) Immunocytochemical localization of d-amino acid oxidase in rat brain. J Neurocytol 28:169–185PubMedCrossRefGoogle Scholar
  13. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961PubMedCrossRefGoogle Scholar
  14. Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoja M, Aiso S (2007) d-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26:4149–4159PubMedCrossRefGoogle Scholar
  15. Sasabe J, Miyoshi Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) d-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci USA 109:627–632PubMedCrossRefGoogle Scholar
  16. Thompson M, Marecki JC, Marinesco S, Labrie V, Roder JC, Barger SW, Crow JP (2012) Paradoxical roles of serine racemase and d-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 120:598–610PubMedCrossRefGoogle Scholar
  17. Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PW (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669PubMedCrossRefGoogle Scholar
  18. Verrall L, Burnet PW, Betts JF, Harrison PJ (2010) The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry 15:122–137PubMedCrossRefGoogle Scholar
  19. Wake K, Yamazaki H, Hanzawa S, Konno R, Sakio H, Niwa A, Hori Y (2001) Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci Lett 297:25–28PubMedCrossRefGoogle Scholar
  20. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of d-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53:401–411PubMedCrossRefGoogle Scholar
  21. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414PubMedCrossRefGoogle Scholar
  22. Wu S, Berger SW (2004) Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann NY Acad Sci 1035:133–146PubMedCrossRefGoogle Scholar
  23. Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW (2004) Induction of serine racemase expression and d-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 1:2PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Neurogenetics Group, Centre for Neuroscience, Division of Brain Sciences, Department of MedicineImperial College LondonLondonUK

Personalised recommendations